Gas Ingress for CCIT throughout life-cycle

Using laser-based headspace analysis

Suzanne Kuiper, Application Manager at LIGHTHOUSE 20-21 Apr 2023 - PDA CCIT Workshop Venice

Overview

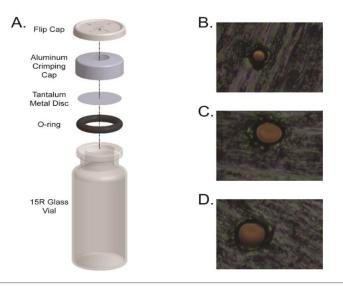
- Part 1: Theoretical background
- Part 2: CCIT in an existing process
- Part 3: CCIT method development and validation
- Part 4: Inherent integrity testing
- Part 5: CCIT in package development

pda.org

Part 1 Theoretical background

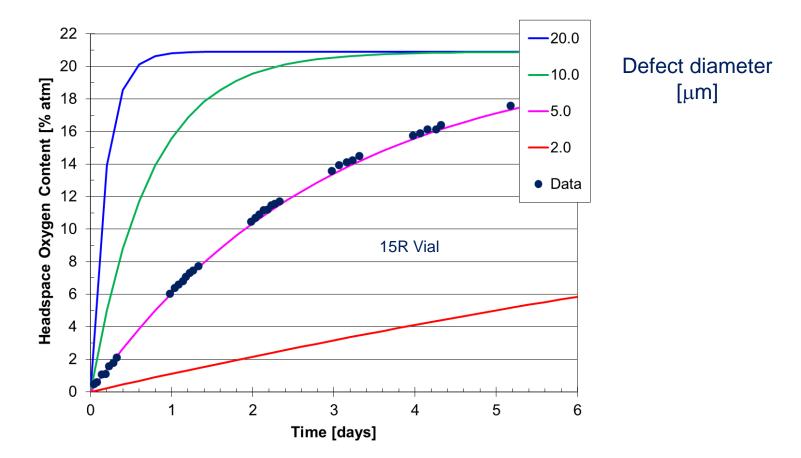
Gas ingress testing for CCI

Two different ways by which gas can flow through a defect in and out of a pharmaceutical container:


- Effusion: gas flow generated by a total pressure difference across the container defect
- Diffusion: gas flow of a particular gas generated by a partial pressure difference of that gas across the container defect

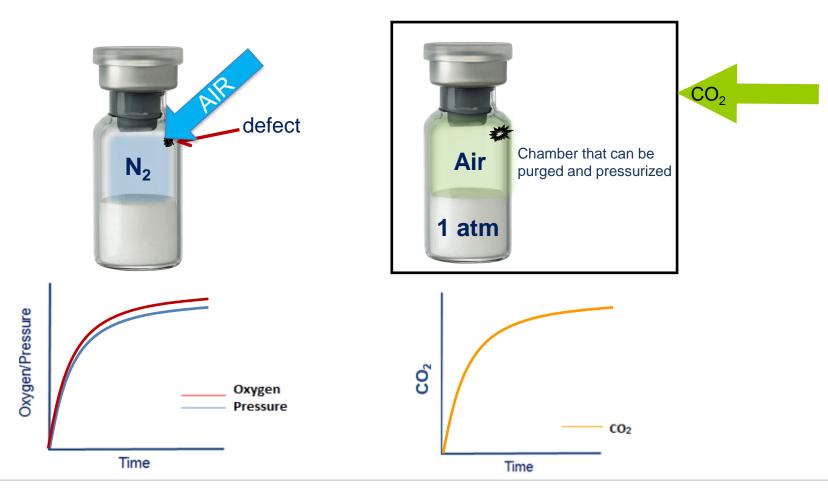
Understanding this gas flow enables the development of CCI test methods based on the measurement of gas ingress

Validating headspace gas ingress methods


- CCIT methods based on detecting gas ingress into the headspace can be demonstrated and validated using known positive controls
- Gas flow physics model also enables calculation of test method sensitivity

Oxygen diffusion ingress model example

Predicted oxygen concentration versus time for ideal defects



Published in PDA Journal Nov-Dec 2017 issue (71): 'Method Development for CCI **Evaluation** via Gas Ingress by Using Frequency Modulation Spectroscopy' [K. Victor]. p 429-453.

Headspace gas ingress as CCIT

Modified headspace

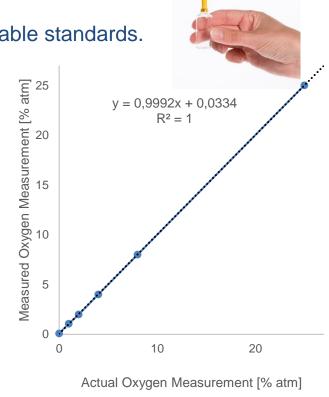
Non - Modified headspace

Headspace analysis systems

Laboratory and At-line Instruments and accessories

Automated Inspection Machines

SYNTEGON


Strategic partnership with Syntegon (formally Bosch) for machines with Lighthouse laser measurement technology inside.

Measurement performance

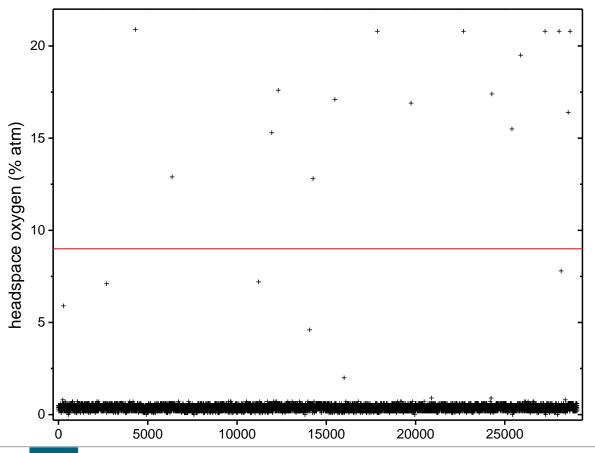
Instrument and machine qualification using NIST traceable standards.

N=100	Headspace Oxygen (% atm)				
Standard Label	Known Value	Meas. Mean	Error	St. Dev.	
0	0.000	0.08	0.08	0.04	
1	0.990	1.06	0.07	0.06	
2	2.000	1.99	-0.01	0.07	
4	4.000	4.00	0.00	0.05	
8	8.000	8.00	0.00	0.07	
25	24.99	25.02	0.03	0.07	
	'	1	↑	1	
			Accuracy	Precision	

- Certificates of NIST traceable calibration standards
- Optional yearly re-certification of standards
- Users and data managed in a database solution for 21-CFR-11 compliance and full audit trail

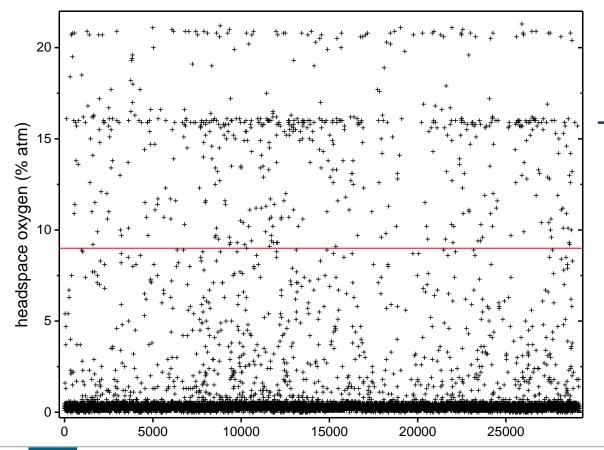
pda.org

Part 2 CCIT in an existing process



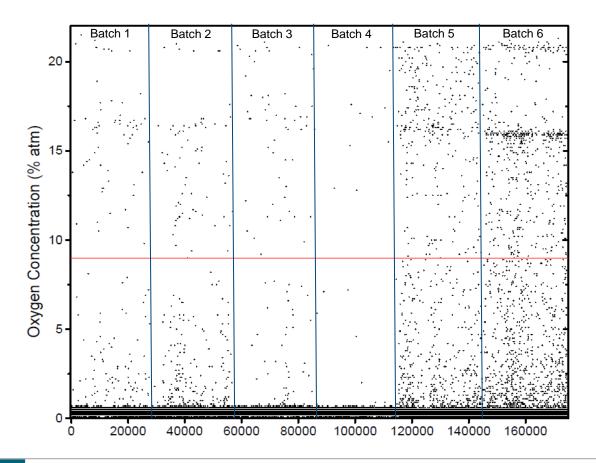
Product: freeze dried **Headspace:** 0.2 atmosphere nitrogen \rightarrow 0% oxygen

Problem: QC identified vials that had lost vacuum **Decision:** Run 100% inspection in short timeframe



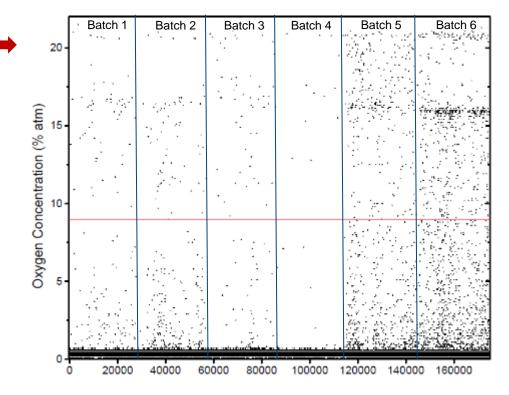
Total batch size: 29048 Number rejected: 16 Reject rate: 0.06%

PDA



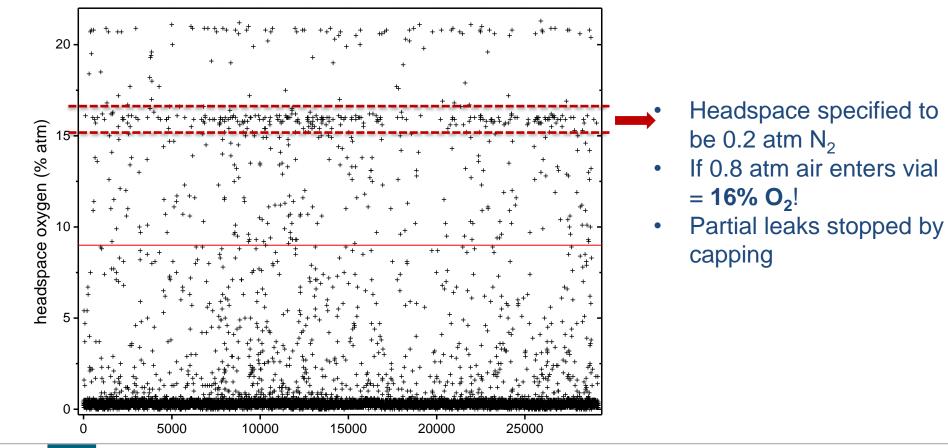
Total batch size: 29156 Number rejected: 568 Reject rate: 1.95%

Not a robust process


Thought experiment: CCI control strategy

Think about the CCI control/testing strategy currently implemented in your company

If your lyo sealing process is doing this would you know about it?

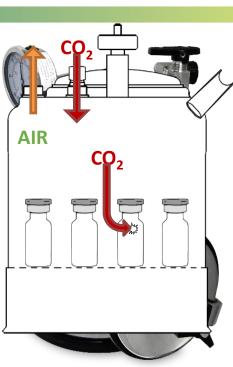

When would you know about it? After 1 batch? After 6 batches? After 30 batches?

What would you need to do to prevent this from happening?

100% Inspection of Iyo product Temporary leaks

PDA

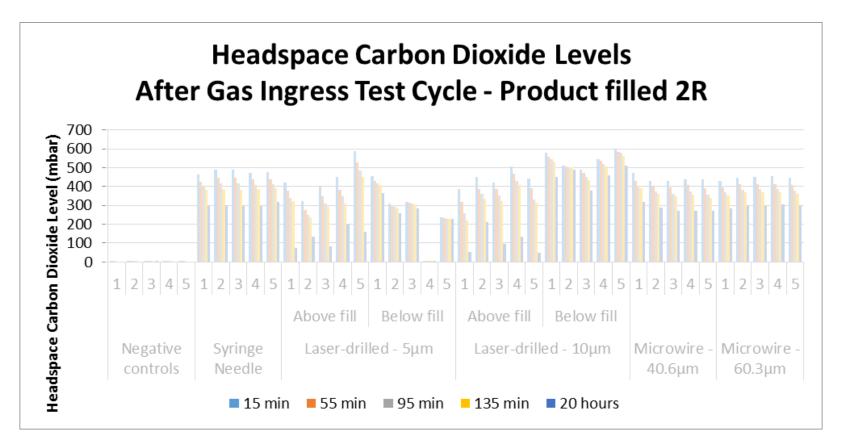
Part 3 CCIT method development and validation


Gas Ingress Testing for CCI

Objective

- Develop an approach similar to blue dye but better
- Reliably detect critical leaks above liquid level: 5µm defect <15 min.

Sample conditioning cycle Measure headspace CO_2 levels



Gas bath instead of blue dye bath

CCI method development – CO₂ Headspace Gas Ingress

CCI method validation – CO₂ Headspace Gas Ingress

Three operators each tested: 5x 5µm laser-drilled positive controls 5x gross defect positive controls 5x negative controls

	Leak Detected?			
Control	Operator 1	Operator 2	Operator 3	CCIT result
5µm laser-drilled defect	5/5	5/5	5/5	Pass
16G needle gross defect	5/5	5/5	5/5	Pass
Negative controls	0/5	0/5	0/5	Pass

pda.org

Part 4 Inherent integrity testing

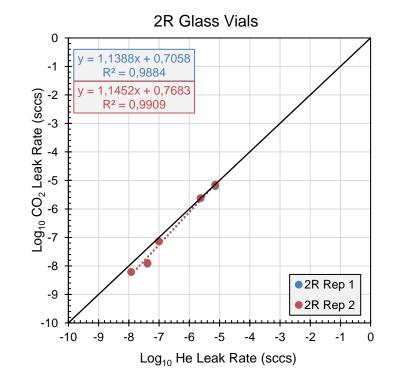
Testing leak rates down to 10⁻⁸ sccs

Row	Air Leakage Rate ^b (std·cm ³ /s)	Orifice Leak Size^c (μm)	
1	<1.4 × 10 ⁻⁶	<0.1	
2	1.4×10^{-6} to 1.4×10^{-4}	0.1 to 1.0	
3	$>1.4 \times 10^{-4}$ to 3.6×10^{-3}	>1.0 to 5.0	
4	$>3.6 \times 10^{-3}$ to 1.4×10^{-2}	>5.0 to 10.0	
5	>1.4 × 10 ⁻² to 0.36	>10.0 to 50.0	
6	>0.36	>50.0	

CO₂ headspace gas ingress method

- All samples stored in a CCIT vessel, 1 atm overpressure with CO₂
- Samples stored for 3 weeks and removed for measurement at 8 time points*

Helium Leak Rate testing method


- One sample tested per time
- Drill hole in container and purge with helium during test
- Draw vacuum on container (for vial, head with cap towards vacuum) and analyze pumped gas with helium leak detector.

^{*}Multiple measurements necessary for conversion of P_{CO2} to leak rate: Victor et al. PDA J Pharm Sci and Tech **2017**, 71 429-453

Testing leak rates down to 10⁻⁸ sccs

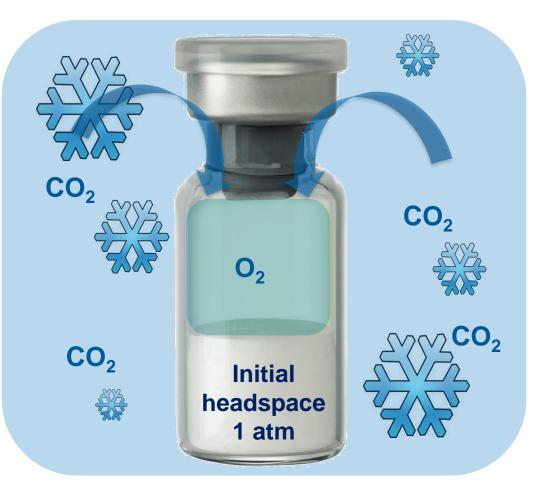
- Five different leak sizes
- Six samples per size tested
- Testing was repeated (Rep 1&2)

Headspace CO₂ gas ingress testing can detect defects as low as 10⁻⁸ sccs (corresponding to << 0.1µm orifice defect size)

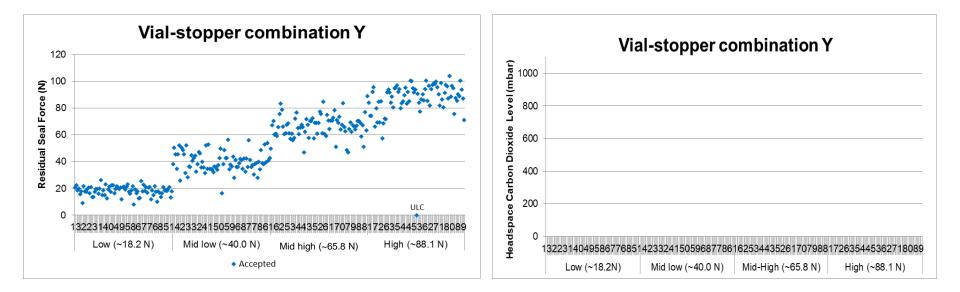
C. Proff, H. Röhl, A. Caudill, J. Nunkaew, K. Victor, "Correlating CCI Leak Rates as Determined by Helium Leak Testing and Laser-Based Headspace Carbon Dioxide Analysis Using Modular Positive Controls", 2023 PDA Parenteral Packaging Conference, 18-19 April 2023.

pda.org

Part 5 CCIT in package development

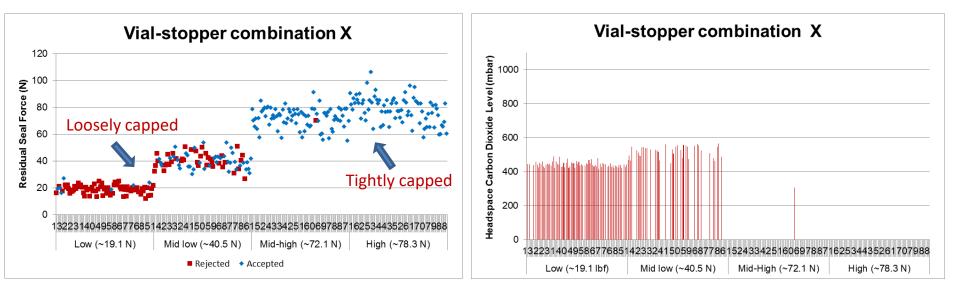


The curious case of temporary leaks


- Air filled vial at 1 atm at room temperature
- On dry ice (-80°C) the initial headspace condenses and creates underpressure
- The stopper can lose its elastic properties and closure can be lost
- Cold dense CO₂ from environment fills headspace
- Warming container to room temperature regains stopper elasticity and reseals closure

Dye ingress cannot detect this!

Primary packaging component selection


- Vial-stopper combination Y samples prepared at target RSF values and stored for 1 week at -80°C in a CO₂ rich environment
- None of the tested samples lost CCI at -80°C

* Ref. 'Mitigating Risk to Container Closure Integrity of a COVID-19 Vaccine Product During Ultra-Cold Chain Storage and Distribution' presentation PDA/FDA Joint Regulatory Conference', Michael Edey, Abriana Rozentsvayg, Derek Duncan

Primary packaging component selection

Data-driven decision making on package components and process parameters

Ref. 'Mitigating Risk to Container Closure Integrity of a COVID-19 Vaccine Product During Ultra-Cold Chain Storage and Distribution' presentation PDA/FDA Joint Regulatory Conference', Michael Edey, Abriana Rozentsvayg, Derek Duncan

Product life cycle approach

Annex 1 focus:

- Using scientifically justified and validated methods.
- Having a scientifically valid sampling plan.
- Having knowledge and experience of the container and closure systems.
- Having a product life cycle approach

Questions?

pda.org

Thank you!

