Optical Emission Spectroscopy, an innovative technology for CCIT

Instructor:

• *Philippe BUNOD*, *PhD.*; *Pfeiffer Vacuum; philippe.bunod*@pfeiffer-vacuum.com Business Development Pharma Europe – Integrity Test Solutions

CONNECTING PEOPLE SCIENCE AND REGULATION®

Structure

- 1. Pfeiffer Vacuum 3 CCIT technologies/equipment's
- 2. Optical Emission Spectroscopy :
 - How does it work ?
 - Influence and limiting factors
 - Advantages
 - Detection of gross leaks
- 3. Case study #1: Low temperature measurements with O.E.S.
- 4. Case study #2: Test of Auto-Injectors.
- 5. Conclusion

Global leak test under vacuum

3 technologies for CCIT Solutions

MICRO-FLOW AND MASS EXTRACTION

Micro-flow sensor

HELIUM MASS SPECTROMETRY

Magnetic deflection spectrometer

OPTICAL EMISSION SPECTROMETRY

Multi-gas analyser (N2,, CO2,, Ar, H20,..)

ASTM F2391-05

USP

3 technologies/equipment's in our CCIT portfolio

Micro-flow sensor

HELIUM MASS SPECTROMETRY

Magnetic deflection spectrometer

OPTICAL EMISSION SPECTROMETRY

Multi-gas analyser (N₂, CO₂, Ar, H₂0,..)

Emerging Technology

O.E.S. – Operating principle

The Earth's invisible magnetic barrier prevents the energy given off by the Sun from boiling away our oceans and dissipating our life-sustaining atmosphere.

The northern lights (aurora borealis) are caused by solar wind and storms can generally be seen at about 70 degrees of latitude, near the Arctic circle.

O.E.S. – Operating principle

O.E.S. – Operating principle

O.E.S. – Real time measurement

The air (N_2) inside the test chamber can be easily evacuated using vacuum pumps.

Moisture ($H_20 \rightarrow H \& OH$) is much more difficult to evacuate because it is coming from out-gassing of materials in contact with vacuum.

Massive leak detection prior to OES

- AMI includes a Massive Leak Detection module (>100µm)
 - GO/NOGO test = qualitative measurement.

• For Dry Filled Products, based on a volumetric method:

- Pressure equilibrium between a vacuum tank and the test chamber.
- The test chamber is designed in order to minimize the free volume around the sample and the vacuum tank is sized accordingly.

• For Liquid Filled Products, based on deep vacuum decay:

- Pressure must be below the vapor pressure of liquid.
- Free volume around the sample is not anymore an issue.

Massive Leak Detection prevents equipment contamination

- In case of Gross Leak (air/<u>liquid</u>), the high vacuum circuit and OES sensor are not contaminated. Only few components can be easily cleaned and dry.

OES – Typical air leakage signal (raw data)

The air leakage corresponds to the intensity ratio $[N_2/H]$

In case of fine leak, the air leakage signal (N_2/H) increases as out-gassing (OH & H) is decreasing with time.

In case of gross leak (>100µm for 1cc headspace), depending on the headspace volume we can see the container being evacuated.

A set of 2 capillaries is used for calibration

- The air leakage provided by the capillaries depending on the CDA inlet pressure set up by the automatic pressure reducer.
- The M1 gauge measures the exact pressure just among the capillaries
- · Calibration certificates are delivered for capillaries & pressure gauge

Calibrated Leak for Air

A quantitative and calibrated leakage measurement !

OES – Influence & limiting factors

For all vacuum test solutions: Detection limit 🔪 when Test Duration 🎢

- Out-gassing limit the sensitivity of the test, it can be minimized by:
 - Design of Container and test chamber (material, surface, roughness)
 - Controlling operating conditions: temperature (°C) and humidity (<30%RH)
 - Increasing the test duration...
- Gross leak detection can be challenging in case of small gas headspace volume combined with a low out-gassing solid drug.
 - Specific Massive Leak test can be performed prior to O.E.S measurements

No sample preparation – Automatic test sequence

- 1/. Part loading (manually or automatically)
- 2/. Chamber evacuation (1000 → few mbar) (Massive Leak detection)
- 3/. Chamber pumping (few mbar \rightarrow <10⁻⁴ mbar)
- 4/. O.E.S. measurement start when pressure is $< 10^{-2}$ mbar
- 5/. Chamber venting (with Ambient air, dry N₂ or Argon)
- 6/. Part unloading

O.E.S. - Fast and sensitive

The Air Leakage raw signal corresponds to the intensity ratio $[N_2/H]$.

OES (Ambiant air venting) 23°C / 50% RH			
Detection Limit	Total Test Duration		
	Leak-3σ Blank+ 3σ	Leak-3σ Blank+ 6σ	
2 µm	10 sec	10 sec	
1 µm	10 sec	10 sec	
0,5µm	10 sec	14 sec	

O.E.S. – Method is volume independent

 \rightarrow 0.5µm defect (sharp edge orifice) can de detected in a batch of 10 vials and/or on 1 vial in the same test chamber.

O.E.S. – Measurements are volume independent

Sensitivity are is not impacted by:

- container expansion during the test
- \rightarrow Tests can be performed on semi-rigid containers
- free space in the chamber around the container
- \rightarrow Test of complex design devices (i.e. AI)
- \rightarrow Possibility of batch testing to increase the throughput

Case #1: Low Temperature Test (-80°C)

Low temperature Module to test closed containers

Low Temperature Test – Sample preparation

Tracer gas charging procedure

700

Low Temperature Test: O.E.S versus Helium

→ Loss of integrity around -60°C can be detected with both test methods O.E.S. and Helium

Low Temperature Test: O.E.S versus Helium

	Ø Helium	🥟 0.E.S.	
Tracer gas	Helium	Gas naturally present into headspace $(N_2, CO_2, Ar,)$	
Sample preparation	Need to charge He and to control [He]	No sample preparation	
Sensitivity	> 1.10 ⁻⁹ mbar.l/s	> 5.10 ⁻⁶ mbar.l/s	
Measurement	Continuous leakage measurements during temperature drop		
	Do not require any tracer gas bombing stage to speed up the test 🛛 🔨		
	He permeation need to be considered	Minimum permeation impact	
	Destructive	Non-destructive	

Case #2: Test of Auto-Injectors

- Detection of small Air leakage or Large Water leakage at the needle shield → bigger risk during the assembly process !
- Water leaks at the plunger
 - ightarrow Difficult to detect with the 3 sealing rings in serie

O.E.S. to test Auto-injectors

In a single test sequence O.E.S. is able to: - measure air leakage > 1 µm orifice

and during the same test sequence

 detect water leak > 5 µm (qualitative test)

within about 45 seconds !

Conclusions

GENERAL FEATURES

Direct measurement

Specific gas leakage escaping from a container under vacuum

Non-destructive testing

Deterministic method

Deterministic method / Calibrated Measurements

Simple and easy to use No sample preparation required

Repeatability Reduces false failures, a very costly issue

UNIQUE FEATURES WITH O.E.S.

Selectivity Can detect air(N₂) and water leaks simultaneously

Speed of test Much faster than other vacuum tests <15 sec to measure 0.4µm orifice on 20ml vial.

Low Temperature measurements (down to -80°C and below)

Conclusions

• AMI equipments, using O.E.S. spectroscopy have been qualified as IPC test for blister packs (sensitive inhalation drugs).

• Promising technology to perform high sensitivity 100% in-line leak testing.

 \rightarrow 0.4µm defect (sharp edge orifice) can be detected in 30 sec on glass vial tested one by one or by batch of up to 10, 50, 100.

Links http://www.pfeiffer-vacuum.com Email : philippe.bunod@pfeiffer-vacuum.com

