PDA Training Course Extractables & Leachables 20 April 2023

THE MECHANISM OF POLYMER MIGRATION -A DESCRIPTIVE APPROACH

Dr. Pieter Van Wouwe

OVERVIEW

- 1. Fabes model a descriptive approach
- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable in a polymer
- 3. Application specific effect
 - Supersaturation
 - Outgassing
 - Blooming

OVERVIEW

1. Fabes model – a descriptive approach

- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable in a polymer
- 3. Application specific effect
 - Supersaturation
 - Outgassing
 - Blooming

1. FABES MODEL – A DESCRIPTIVE APPROACH

Migration of leachables from polymers into a liquid can be described by the **FABES MODEL**:

$$\frac{m_{F(t)}}{A} = 0.1 c_{p,0} \rho_p d_p \left(\frac{\alpha}{\alpha+1}\right) \left[1 - \sum_{n=1}^{\infty} \frac{2 \alpha (1+\alpha)}{1+\alpha+\alpha^2 q_n^2} \exp\left(-D_p t \frac{q_n^2}{dp^2}\right)\right]$$

 \rightarrow Very complex model: more qualitative discussion of factors in next slides

OVERVIEW

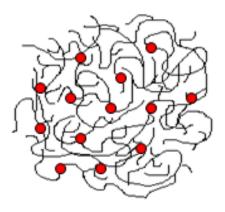
- 1. Fabes model a descriptive approach
- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable through the polymer
- 3. Application specific effect
 - Supersaturation
 - Outgassing
 - Blooming

2. FACTORS AFFECTING LEACHING

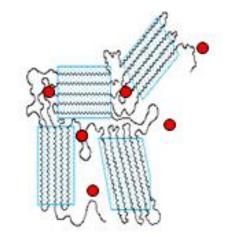
Leaching will depend upon:

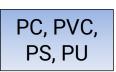
SOLUBILITY of a leachable **IN** the polymer

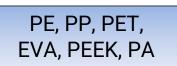
DIFFUSION of a leachable **THROUGH** the polymer



<u>1. Polymer morphology</u>

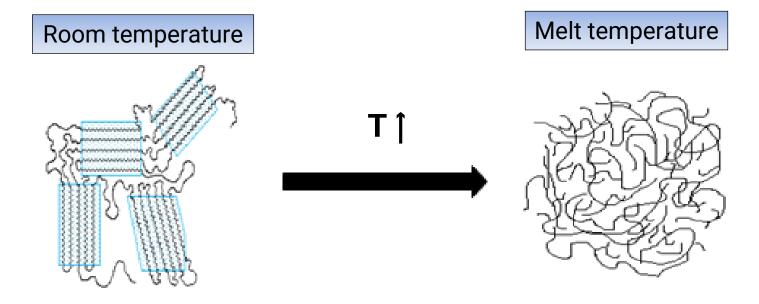

AMORPHOUS


SEMI-CRYSTALLINE


Polymer additive/impurity

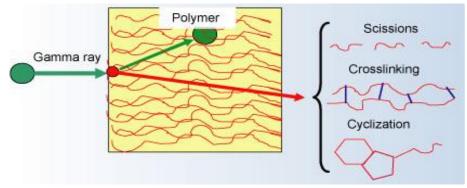
- Dissolves in amorphous phase
- Insoluble in crystalline phase

CRYSTALLINE SITES: BARRIER FOR MIGRATION



2. Temperature

As temperature increases, solubility increases


RESULT: BETTER SOLUBILITY at higher T LESS "CRYSTAL BARRIER" for migration

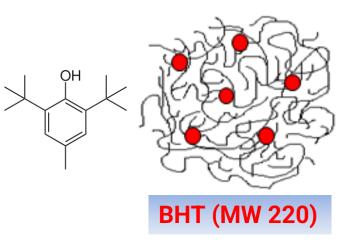
3. Age / sterilization

Polymer degradation
Polymer additive degradation
Changes in polymer crystalinnity

This will impact the: LEACHABLES SOLUBILITY LEACHABLES MIGRATION

CONCLUSION:

» Perform E&L testing on final STERILIZED SYSTEMS



VS.

4. Structure and molecular weight of a leachable

Molecular weight

 \rightarrow larger molecules = lower solubility

Polarity "match"Melting point

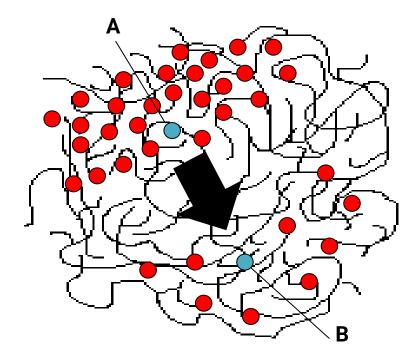
Irganox 1010 (MW 1176)

- \rightarrow structurally ALIKE
- \rightarrow higher T_{melt} = lower solubility
- → impacted by molecular symmetry & crystallinity

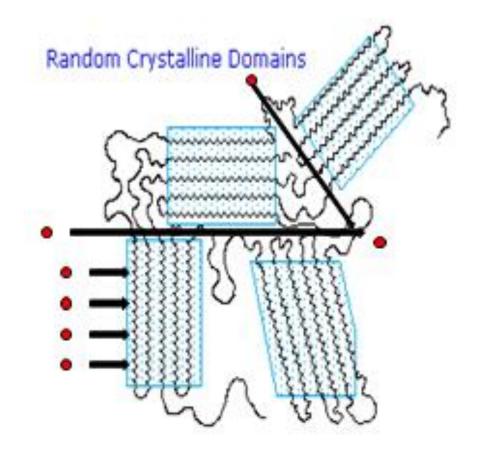
2. FACTORS AFFECTING LEACHING

Leaching will depend upon:

SOLUBILITY of a leachable **IN** the polymer


DIFFUSION of a leachable **THROUGH** the polymer

FICK'S 2nd LAW OF DIFFUSION:


$$\frac{dC}{dt} = D \, \frac{d^2C}{dx^2}$$

with C: concentration t: time $(t_A \rightarrow t_B)$ x: distance $(x_A \rightarrow x_B)$ D: Diffusion coefficient $D = D_0 \exp(-E_A/RT)$

- **<u>1. Polymer morphology</u>**
- Crystalline sites: Impermeable barrier for polymer additives
- Filler particles: Diffusion barriers for polymer additives
- <u>Less diffusion in</u>: Semi-crystalline polymers

2. Temperature

Remember:

 $D = D_0 \exp(-E_A/RT)$ (E_A: activation energy, R: gas constant, T: temperature)

Therefore:

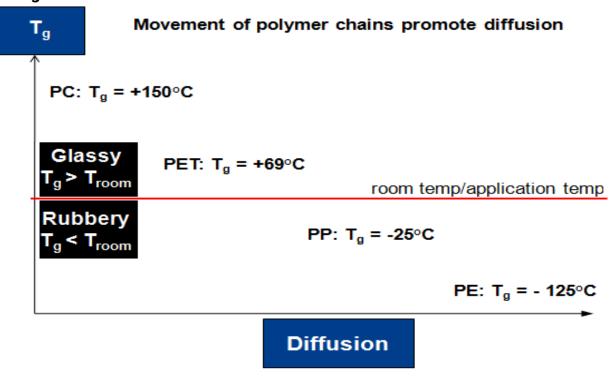
If T î, then D Î

DIFFUSION of impurities/polymer additives will **increase exponentially** when **temperature increases**

3. Polymer type

Glass TransitionTemperatur	(T _g)
----------------------------	-------------------

Polymer transitions fr	om	GLASSY	$(T < T_g)$
to		RUBBERY	$(T > T_g)$
EXAMPLES			


LDPE	T _a = -125 °C	PBT	$T_{a} = 70 ^{\circ}C$
POM	T _a = -50 °C	PVC	T _a = 81 °C
PP	T _a = -25 °C	ABS	T _a = 110 °C
	5	PC	T _a = 150 °C

3. Polymer type

Lower T_q = higher potential for diffusion at room temperature

3. Polymer type

FREE VOLUME

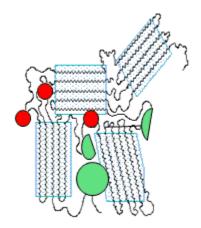
Ratio of:

Interstitial space (between polymer chains) Total volume of the polymer

Polymers in a **Rubber State** $(T_g < T)$ Typically have **HIGHER** free volume

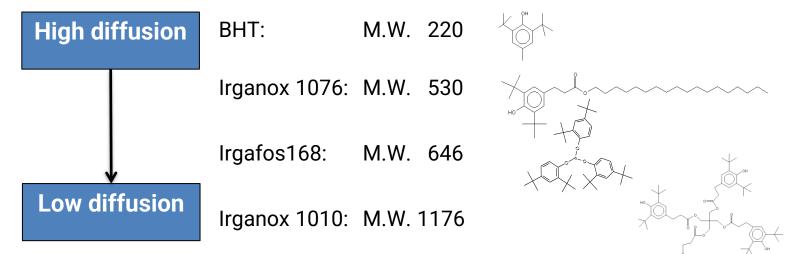
More free volume promotes diffusion

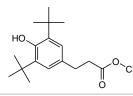




4. Molecular weight of leachable

Diffusion increases with decrease in M.W.

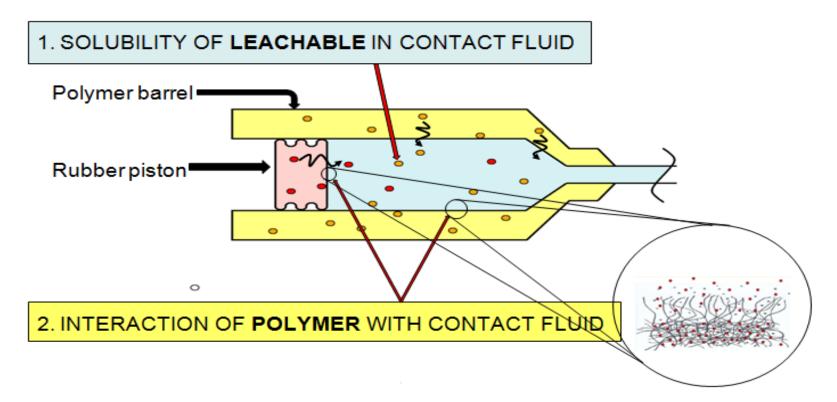



4. Molecular weight of leachable

Oligomeric additives \rightarrow reducing diffusion

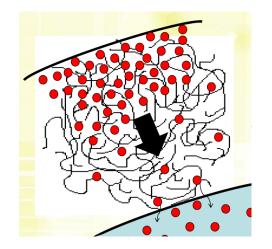
Polymer additive DEGRADATION into smaller molecules \rightarrow FASTER DIFFUSION of degradants

Example: 3,5-Di-*tert*-butyl-4-hydroxyphenyl propionic acid methyl ester (*Degradation product of Irganox 1010 / Irganox 1076*)



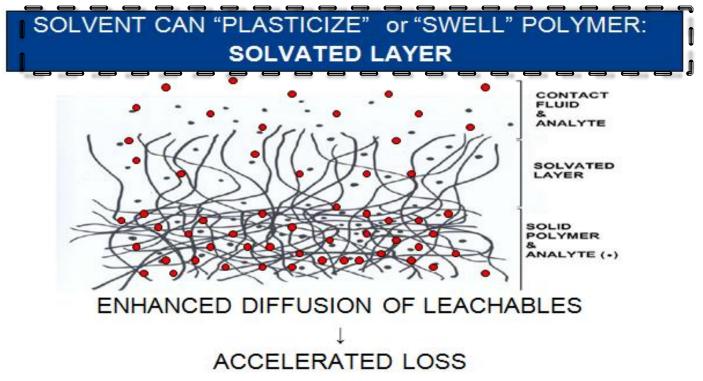
5. Contact fluid / environment

Two Important aspects:



5. Contact fluid / environment

1. Solubility of the leachable in the contact fluid



In general for most organic compounds:Organic / hydrophobic contact solutions= HIGH SOLUBILITY solventsWFI/hydrophilic contact solutions= LOW SOLUBILITY solvents

- 5. Contact fluid / environment
- 2. Interaction of the contact fluid with the polymer

OVERVIEW

- 1. Fabes model a descriptive approach
- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable in a polymer
- **3. Application specific effect**
 - Supersaturation
 - Outgassing
 - Blooming

3. APPLICATION SPECIFIC EFFECTS

1. Super saturation

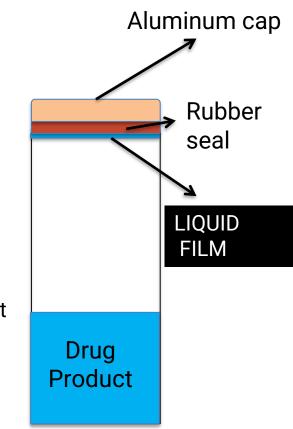
LIQUID FILM is formed via

- Evaporation during storage
- o Transportation

Film may be different in composition than the DP

Diffusion of rubber compounds into small volume

- o Metals
- o Organic

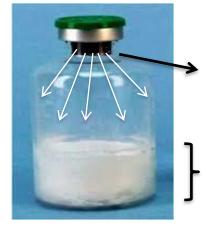

Can cause aggregation, particle formation

May be irreversible

 Particles do not dissolve anymore when in contact with the total DP volume

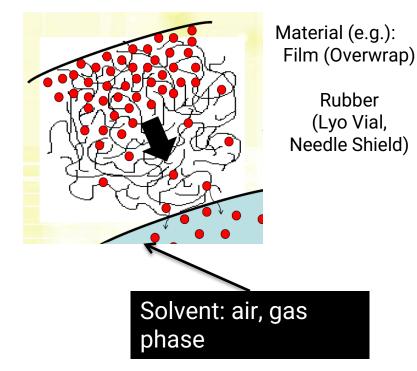
LIQUID FILM may also act as "barrier"

- o for migration
- for outgassing (see next slide)



3. APPLICATION SPECIFIC EFFECTS

2. Outgassing


OUTGASSING of RUBBER CLOSURE

Lyo Cake = adsorbent

No "Liquid Film" barrier on rubber (see previous slide)

Outgassing is mainly an issue for:

- Volatile organic compounds
- Semi-volatile organic compounds

3. APPLICATION SPECIFIC EFFECTS

3. Blooming

What is it?

- Blooming is a physical phenomenon
- Observed in polymers which are (super)saturated with additives
- A process of diffusion controlled migration of additives from the polymer
- Typical for additives with **low solubility** & **high diffusion rate**

Typical conditions when blooming occurs

- Low solubility of the additive in the polymer
- **High diffusion** of the additive through the polymer
- Dosing of the additive into the polymer close to the solubility of the additive in polymer
- Low temperature applications may accelerate blooming process (lower solubility, but also lower diffusion...)

QUESTIONS?

pda.org

