Sterilization basics Radiation Technology & Gas

A.Gillet, Technical Director Gas, Pharma - STERIGENICS

Introduction

Market Segments:

Sterilization:

- Medical Devices
- Drug/Pharmaceuticals

Decontamination:

- Vaccines & biologics
- Advanced Application
- Tissue
- Food
- Cosmetics

Sterilization Methods Used to Sterilize Single-Use Medical Products

Source: Global Industry Analysts. Sterilization Equipment and Supplies. A Global Strategic Business Report. MCP-3362. October 2011.

Introduction

Where you probably do not expect us!

Gemstones colour change

Frog Leggs

Mail Anthrax decontamination

Cosmetic packaging

Physical properties change

Bioburden reduction

Introduction

Aseptic Assembly

Content

- Basics of sterilization
 - Distinguish disinfection, sterilization and decontamination
 - Definition
 - Selection of sterilization method
 - Difference between Aseptic Assembly and Terminal Sterilization
- Sterilization using Irradiation
 - o Gamma
 - o E-Beam

Coffee break

Content

- Sterilization by gas
 - Ethylene oxide
 - Novel technologies (NO₂)
- Comparison between technologies

- Decontamination Vs Sterilization
- Terminal Sterilization Vs Aseptic Assembly
- Method selection

Decontamination Vs Sterilization

Validation			_
Sterilization	Decontamination	Disinfection	Cleaning
The application of a lethal sterilizing agent to finished product within a sealed container to achieve a predetermined sterility assurance level (SAL) of 10^{-6} or better – <i>GMP Annex 1 Draft</i>	A process that eliminates viable bioburden via use of chemical agents <u>GMP Annex 1 Draft</u>	The process by which surface bioburden is reduced to a safe level	Removal of contamination from an item to the extent necessary for further processing or for intended use ISO 11139:2006

A sterile product is one that is free of viable microorganisms

Absolute sterility can never be guaranteed!

- 100% control of the batch is not possible
- No assurance that any microorganism can be detected during Sterility Test

Sterility Assurance Level (SAL) = The **probability**

of a single item in a batch being non-sterile after being subjected to a sterilization process.

Sterile: SAL ≤ 10⁻⁶

SAL likelihood of surviving organisms

 $10^{-1} = 1:10$

 $10^{-2} = 1:100$

 $10^{-3} = 1:1,000$

 $10^{-4} = 1:10,000$

 $10^{-5} = 1:100,000$

 $10^{-6} = 1:1,000,000$

Sterility is much more than just a process!

Initial contamination level

- Microbiological status raw material and components
- Cleaning and disinfection procedures
- Environment control
- Personnel Hygiene

ntual

Equipment

- Control
- Maintenance
- Calibration

Product preservation

- Packaging
- Storage

Selection of the Sterilization Method

 Think about sterilization process selection up front / early during product development

Sterile means: Safe Product & Functional product

Selection of the right sterilization method is critical!

Regulatory update:

GMP EudraLex Volume 4 – Annex 1 – Aug 2022

ISO 11135:2014 -> FDIS under revision (2023)

No single sterilization method will be compatible with every product on the market

There are two (2) methods to produce a sterile drug product:

Aseptic Assembly

Maintain sterility of a product that is assembled from components, each of which has been previously sterilized

Sterile

Terminal Sterilization

Exposure to a physical or chemical sterilizing agent for a predetermined extent of treatment

Sterilized

Selection of the Sterilization Method:

"Wherever possible, a process in which the product is sterilized in its final container (terminal sterilization) is chosen"

European Pharmacopoeia 9.7

Per PDA 2017 Survey – 30% of Aseptically assembled product could be Terminally sterilized!

Is the effectiveness of a sterilization process assessed the same way for AA or TS products?

Reference: ISO TS 19930:2017

Selection of the Sterilization Method:

Use a **structured approach** to select the most appropriate sterilisation method

Based on EMA - CPMP/QWP/054/98 Decision Tree for the selection of sterilisation methods

Prior to making your choice, consider mitigation options:

- Can your formula be adapted (limit degradation and impurities)?
- Can the container be adapted?
- Can you select compatible component with selected sterilization process?
- Can the process can be optimized (limit impact)?

Radiation Technology

- General principles
- Gamma
- E-Beam
- Sterilization validation

General Terminology

Radioactivity:

Electromagnetic radiation (photons) produced by radioactive decay.

Ionising

Non-Ionising

E-beam = Electrons (with a mass)

General Terminology

Radiation

Energy in the form of waves or moving subatomic particles

Radioactive

Substance emitting radiation

Exposure to radiation

≠ Making something radioactive

General Terminology

Ionising Radiation

Radiation capable of knocking electrons out of their thermal orbits in atoms or molecules. It creates ions and free radicals. Breaks chemical bonds and may change material properties

(Absorbed) Dose

Measure of the amount of energy that is absorbed by the material while exposed to a radiation source.

Unit: Gray 1 Gy = 1 Joule per Kg material

How Radiation can be used to Damage DNA in Living Cells for Sterilization

Direct action: the radiation hits the DNA molecule directly or via the ejected electron, disrupting the molecular structure leading to cell damage or cell death.

Indirect action: the radiation hits the water molecules, the major constituent of the cell, and other organic molecules in the cell, whereby **free** radicals such as hydroxyl are produced. Free radicals are very reactive.

Critical Parameters for Effective Radiation Treatment

Time!

Essentially a 1-step process – controlled by amount of time in the radiation field

Temperature typically not a factor – considered "cold sterilization" process. Typically 25-40 °C, but can be controlled!

Irradiation can take place under refrigerated or frozen conditions if necessary

Irradiation process monitoring:

Dosimeter

Device having a reproducible, measurable response to radiation, which can be used to measure the obsorbed dose in a given system.

0 kGy 12 kGy 25 kGy 50 kGy 0kGy

Type of radiation, generation and directionality of radiation field

Photons from Radioactive decay

Electron Beam 10 MeV Electrons

Particle accelerator

Directional radiation flux can be tailored to product needs

Gamma Irradiation

Source: ⁶⁰Co (mostly)

Decay rate: 12% per year (Half life 5,3 years)

Source Activity: Several Million Ci

Layout Gamma facility

Product overlap

Sterilization by E-Beam

Sterilization by E-Beam

Electron Beam

Directed stream of electrons (B radiation) produced by a particle accelerator

Beam energy

Speed of the electrons. Parameter related to depth of penetration Limited to 10 MeV for medical device sterilisation (ISO 11137-1) to avoid radioactivity induced in product

IBA Rhodotron

Layout E-Beam facility

Electron Beam & Gamma, Penetration

Comparison

Parameter	Gamma	E-Beam
Irradiation parameter	Cycle Time Density	Conveyor speed Density Scan width Beam energy
Radiation Field	Isotroptic	Highly directional
Geometry of material and heterogeneity of Product	Important to consider	Critical

Parameter	Gamma	E-Beam	
Product Treatment	Pallet/Tote	Boxes	
Dose Rate (Dmin 25KGy)	Hours	Seconds	
Dose uniformity ration (DUR)	Low sensitivity to product thickness	sensitivite to product thickness	
On/Off Technology	No	Yes	
Flexible Target Dose	No	Yes	
Process validation	Straightforward	Potentially complicated	

Validation principles

Relevant Standards:

ISO 11137-1:2015

Sterilization of health care products – Radiation – Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices

ISO 11137-2: 2015

Sterilization of health care products – Radiation – Part 2: Establishing the sterilization dose

GMP – Annex 12

Use of ionising radiation in the manufacture of medicinal products

Validation principles

Method VD_{max}

Validation principles

Bioburden is critical parameter in Irradiation technology
Sample Item Portion (SIP) is frequently used for bioburden evaluation.
Basis for SIP can be:

Length

Consistent diameter tubing

Mass

- Powders
- Gowns
- Absorbable implants

Volume

Fluid

Surface Area

- Non-absorbable implants
- Variable ("

Validation principles

Select Sterilization Dose

 $Method\ VD_{max}$

Example minimum

Dose to apply related to bioburden

Bioburden Range	Dose (kGy)		
≤ 0.1 to 1.5	15.0		
\leq 0.1 to 9.0	17.5		
≤ 0.1 to 45	20.0		
≤ 0.1 to 220	22.5		
≤ 0.1 to 1000	25.0		
≤ 1.0 to 5000	27.5		
\leq 1.0 to 23,000	30.0		
\leq 1.0 to 100,000	32.5		
\leq 1.0 to 440,000	35.0		

Validation principles

Select Verification Dose: VD_{max}²⁵

Bioburden	Verification Dose (kGy	
40	8.6	
45	8.7	
50	8.8	
55	8.9	

Verification is conducted at an SAL of 10-1 with 10 product items irradiated.

Validation principles

Dose Mapping

Establish the distribution of absorbed dose within the irradiation container when packed with product in a defined configuration

- Min and Max limits of absorbed Dose
- Define cycle time
- Establish monitoring points
 - Min Dose = 28KGy
 - Max Dose = 37KGy

Sterilization by Radiation Validation principles

Quarterly Dose Audit (QDA)

Check bioburden

Can vary due to

- Season
- Environment ...

Verification Dose

(Often In a research irradiator)

Ex: 8,7KGy

Sterility Test

SAL10⁻¹

Confirm Product SAL 10⁻⁶

With Routine Dose

Ex:25KGy

Examples

... But also

Grafts

Summary

Minium & Maximum dose to product shall be defined

Methods 1, 2, VDmax, "equivalent method"

Based on natural product bioburden

Routine process monitored with dosimeters

Quarterly Dose Audit (QDA) required

Ethylene Oxide Sterilization

Introduction

History

Mode of Action

- Extremely reactive
- Irreversible reaction with DNA and proteins (alkylation)
 - The molecule is loses function
 - Replication stops
 - The cell dies

Mainly used to sterilize:

- Heat-sensitive material
- Material sensitive to ionizing radiation
- High Volumes
- Packs with multiple components

Device/packaging must be permeable to the gas

- No aqueous substances
- No protein-type materials
- Powders, batteries, electronic circuits have to be assessed (risk of explosion)
- Vacuum/heat can have adverse impact on some packaging (bubble wrap packaging, polystyrene)

Customer Needs To Define

Product
Families/Processing
Categories

Finalize Packaging

Load Configuration

Bioburden

Internal PCD

Key Parameters

Industrial sterilization performed in 104-140 °F (40–60°C) temperature range

Necessary for alkylation reaction EO is most effective at RH > 30

Microbiological deactivation

is more effective with longer gas dwell phase (**Industry cycles** typically 3-4 hours)

3-Step Process

Typical EO Cycle Design

- ✓ Optimize the EO sterilization process ✓ Enhance the safe and
- Enhance the safe and sustainable use of EO

Monitoring EO Sterilization - Biological Indicators

- Usually, the BI contains at least a million spores (>10Exp6) of an organism that is highly-resistant to the EO process (Bacillus atrophaeus)
- Growth is very characteristic (orange ring)

Process Challenge Device (PCD)

Item designed to constitute a defined resistance to the sterilization process and used to assess performance of the process

- Internal PCD (IPCD)
- External PCD (EPCD)

D Value

The Time needed to deactivate 90% of population of microorganisms (or 1 Log Reduction)

SAL ≤10⁻⁶

The sterilization cycle is validated to predict achievement of an SAL equal to or less than a specified value (≥12LR)

Validation principle

Level of Sterility Assurance

Example:

$$D_{value}$$
 IPCD = 15min = 1LR

6 LR = 90 min (Half cycle) 12 LR =180 min (Full cycle)

- Establish Product/IPCD D_{Value}
- Product Natural bioburden killed
- Define Challenges (IPCD -EPCD)

- Confirm IPCD selection (SAL ≤10⁻¹)
- Confirm External Challenge (EPCD)

- SAL ≤10⁻⁶
- Aeration validation Residue
 Tests

Sterilization by Ethylene Oxide Residues

Limited Exposure (<24h)

Prolonged Exposure

Permanent Contact

Body mass to consider (Amd1:2019)

Compounds that remain on product after EO sterilization:

- Ethylene Oxide (EO)
- Ethylene Chlorohydrin (ECH) = EO + HCL
- Ethylene Glycol (EG) = EO + H2O

Reference: **ISO 10993-7:2008** "Biological Evaluation Of Medical Devices-Part 7: Ethylene Oxide Sterilization Residuals"

Residue Limits for Pharma

Raw materials /Finished product

- Ethylene oxide: 1 μg/g
- O Ethylene chlorohydrin (or any other halogenated ethylenehydrine): 50 μg/g.

If the residual ethylene oxide originates from its use in the raw starting material, its content must be limited in the raw starting material.

Containers

Specification (based on simulated use):

- Ethylene oxide: 1 μg/ml (container volume)
- Ethylene chlorohydrin (or any other halogenated ethylenehydrine): 50 µg/ml (container volume).

Reference: EMEA/CVMP/271/01 Note for guidance on limitations to the use of ethylene oxide in the manufacture of medicinal products

Residue Limits for Pharma

Other limits can be established based on

- Risk analysis
- Toxicological data
- Product intended use

Note: In a prefilled syringe, the syringe is both the injector device and the primary packaging!

Reference: ICH guideline M7(R1) on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

PDA®

Sterilization by Ethylene Oxide

Medical Devices

Drug products

NO₂ Sterilization

FDA Innovation Challenge 2

- **Short** process time (2-4hours).
- Safe and simple to use: non-flammable, nonexplosive and non-carcinogenic
- Wide variety of compatible materials (if not cellulose based)

 Allows processing of moisture/temperature sensitive materials

 Validation with the NO₂ Sterilization method follows ISO 14937

- Low residuals
- Small volume Scale up ?

NO₂ Sterilization

Key Parameters

Necessary for **oxidation reaction** effective at **60-80 RH** %

Microbiological deactivation

is more effective with longer gas dwell phase (**Total Cycle time = 4-8h**)

2-Step Process

Comparaison Radiation and Gas sterilization

Parameter	Gamma or X-Ray	E-Beam	EO	NO2
Process	Individual product, box, tote, pallet	Boxes	Pallets – High Volume	Plastic Tote 1 pallet
Material compatibility	Not compatible with some type of polymers (PTFE and PVC affected)	Wider polymer compatibility compared to Gamma	Very good No liquid/proteins Low Temperature (40-55°C)	Good No Cellulose (paper/carton) No liquid/proteins Very Low Temperature (25°C)
Validation	Straightforward	Straightforward	Complicated	Complicated
Validation principle	Based on bioburden	Based on bioburden	Based on Bio Indicators or bioburden	Based on Bio Indicators
Requalification	Every 3 months (QDA)	Every 3 months (QDA)	Every 2 years (1 cycle)	Every 2 years (1 cycle)
SAL	<10exp6	<10exp6	<10exp6	<10exp6
Residues	None	None	ETO,ECH,(EG)	NO2,NO3

Selection of the method

Ideas to allow Terminal sterilization:

From:

- Steam sterilization ≥121 °C, ≥15 min / Dry heat ≥160 °C, ≥ 2 hours
- High sterilisation doses and wide specs (e.g. 25 kGy – 50 kGy)
- "Overkill" approach for EO

To:

- Lower sterilisation doses/exposure based on bioburden
- Steam: F0 ≥8 minutes
- Irradiation under Inert atmosphere
- Irradiation in cryotainers with dry ice
- shallow vacuum cycle in EO
- Higher SAL (10-4)
- New sterilization technology (NO2)?

Conclusions

Conclusions

Selecting the Right Technology is Key!

There are multiple Terminal
Sterilization possibilities
Key is to select the most
appropriate technology to
YOUR product!

Thank you

agillet@eu.sterigenics.com

Reference Slide

- ISO 11135:2014 Sterilization of medical devices Requirements for the development; validation and routine Control of a Sterilization Process for Medical Devices – Ethylene Oxide
- ISO 10993-7:2008 Amd1 (2019) Biological evaluation of medical devices Part 7: Ethylene oxide sterilization residuals
- ISO 11137-1 Sterilization of health care products Radiation Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices
- ISO 11137-2 Sterilization of health care products Radiation Part 2: Establishing the sterilization dose
- ISO 11737-1:2018 Sterilization of medical devices (Microbiological methods) Part 1: Determination of a population of microorganisms on products
- ISO 11737-2:2009 (R) 2014
- Sterilization of medical devices (Microbiological methods) Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process
- ISO 11138-1:2017
- · Sterilization of health care products (Biological indicators) Part 1: General requirements
- ISO 11138-2:2017
- Sterilization of health care products (Biological indicators)Part 2: Biological indicators for ethylene oxide sterilization processes
- ISO 14161: 2009 (R) 2014
- Biological indicators. Guidance for the selection, use and interpretation of results

Reference Slide

- ISO 11737-2:2009 (R) 2014
 Sterilization of medical devices (Microbiological methods) Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process
- ISO TS 19930:2017 Guidance on aspects of a risk-based approach to assuring sterility of a terminally-sterilized, single use health care product unable to withstand processing to achieve maximally a sterility assurance level of 10-6
- AAMI TIR 33 Sterilization of health care products—Radiation—Substantiation of a selected sterilization dose Method Vdmax
- United States Pharmacopeia (USP) Chapter <71> Sterility Tests
- Eudralex Volume 4 GMP Annex 1
- Eudralex Volume 4 GMP Annex 12
- European Pharmacopeia (EP) Chapter 2.6.1 Sterility
- The Aseptic and Sterile Processing: Control, Compliance and Future Trends Edited by Tim Sandle, Edward Tidswell PDA – 2017
- PDA Survey: 2017 PDA Aseptic Processing
- A comparison of Gamma, E-beam, X-Ray and ETO technologies for the industrial Sterilization of MD and Health care products – GIPA, IIA – 31 Aug 2017

