pda.org

Short Script: Theory 3 & Practical Work 1 - 3 Dr. Julian Lenger

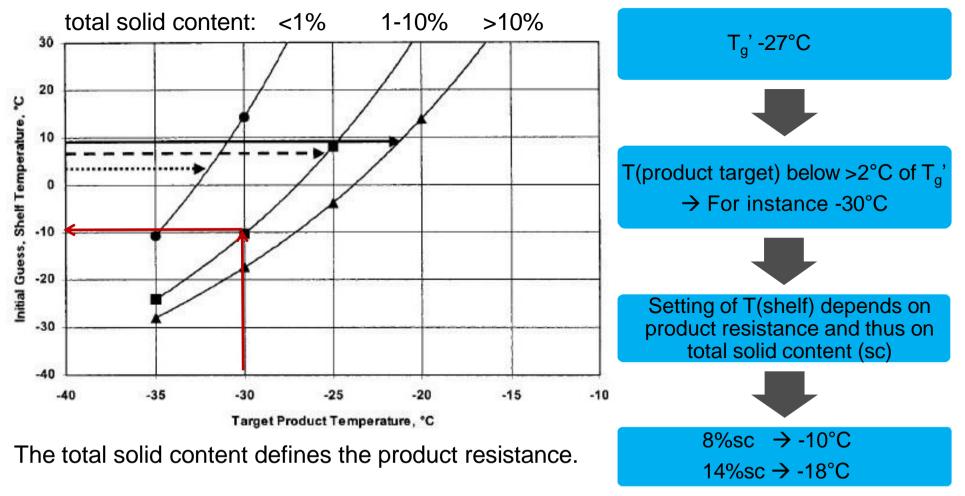
Scientific Head in Drug Product Development at Bayer AG

julianh.lenger@gmail.com

PDA EU Freeze – Drying in Practice

12 – 16 June 2023 Martin Christ Osterode am Harz, Germany

Adapted from slides originally created by and with courtesy of PD Dr. Andrea Allmendinger


Pharmaceutical Research, Vol. 21, No. 2, February 2004 (© 2004)

Review

Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice

Xiaolin (Charlie) Tang¹ and Michael J. Pikal^{1,2}

Initial shelf temperature estimation:

Connecting People, Science and Regulation®

Literature recommendation:

Figure reprinted from Tang X, Pikal MJ. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm Res. 2004;21(2):191–200. Copyright © 2004, Plenum Publishing Corporation

Chamber pressure > Vapor pressure

500 mTorr

Chamber pressure < Vapor pressure

100 mTorr

- Vapor pressure of ice at -30°C \rightarrow 380 µbar = 290 mTorr
- Rule of thumb for chamber pressure setpoint: 20-30% of vapor pressure at target product temperature
 For target T_p = -30°C → 26% * 380 µbar = ~100 mbar = 75 mTorr
- Alternative: $P_c = 0.29 \cdot 10^{(0.019 \cdot T_p)}$ For instance: P_c (Torr) = 0.29*10^(0.019*(-30)) $P_c = 0.078$ Torr = 78 mTorr

Connecting People, Science and Regulation

Equation taken from:

Tang X, Pikal MJ. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm Res. 2004;21(2):191–200.

Vapor Pressure of Ice

In contact with its own vapor

Temp	Va	apor Pressu	Ire	Temp	Va	por Pressu	ire	
°C	Pa	μmHg	ubar	°C	Pa	µmHg	µbar	
0	611.1	4584.4	6111	-42	10.22	76.6	102	
-2	517.7	3883.6	5177	-44	8.10	60.8	81	
-4	437.4	3281.6	4374	-46	6.39	48.0	64	
-6	368.7	2765.9	3687	-48	5.03	37.7	50	
-8	309.9	2325.1	3099	-50	3.94	29.5	39	
-10	259.9	1949.4	2599	-52	3.07	23.0	31	
-12	217.3	1630.0	2173	-54	2.38	17.9	24	
-14	181.2	1359.1	1812	-56	1.84	13.8	18	
-16	150.6	1130.1	1506	-58	1.41	10.6	14	
-18	124.9	936.9	1249	-60	1.08	8.1	11	
-20	103.2	774.4	1032	-62	0.82	6.2	8.2	
-22	85.07	638.2	851	-64	0.62	4.7	6.2	
-24	69.88	524.3	699	-66	0.47	3.5	4.7	
-26	57.23	429.3	572	-68	0.35	2.6	3.5	
-28	46.71	350.4	467	-70	0.26	2.0	2.6	
-30	38.00	285.1	380	-72	0.19	1.5	1.9	
-32	30.81	231.1	308	-74	0.14	1.1	1.4	
-34	24.89	186.7	249	-76	0.10	0.8	1.0	
-36	20.03	150.3	200	-78	0.08	0.6	0.8	
-38	16.07	120.5	161	-80	0.05	0.4	0.5	
-40	12.84	96.3	128	-82	0.04	0.3	0.4	

1 mbar = 750.1 microns

1 micron = 0.1333 Pa

1 Pa = 7.5006 microns

1 mbar = 100 Pa

1 micron = 0.0013 mbar

1 Pa = 0.01 mbar

mbar (cgs units) = millibar (10 E3 dyns/cm sq) microns = micrometers of mercury Pa (SI units) = Pascals (N/m²) micron = μmHg = mTorr

UpperformExample 1Example 1SolutionSolutionSegulation of vacuum: \Box Pirani \Box MKSProduct assumptions: $T_g = -32 \ C$;
drying safely below T_g ; 8% solute conc.
Target $T_p = -34 \ C$

Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2°	Manual mode: stooper ing
Time (hh:mm)		0:15	01:00	0:45						06:00	
Shelf temp. (°C)	20	5									
Vacuum (mbar)	off	off	off	off	off						750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)		15	60	1	5	10	10	10	10	60	

Lyophilization Programworking sheet
RegularRegulation of vacuum: \Box Pirani \Box MKSProduct assumptions: $T_g = -32^{\circ}C$;
drying around T_g ; 8% solute conc.
Target $T_p = -32^{\circ}C$

Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2°	Manual mode: stooper ing
Time (hh:mm)		0:15	01:00	0:45						06:00	
Shelf temp. (°C)	20	5									
Vacuum (mbar)	off	off	off	off	off						750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)		15	60	1	5	10	10	10	10	60	

Lyophilization Program

working sheet Aggressive

Regulation of vacuum:
□Pirani
□MKS

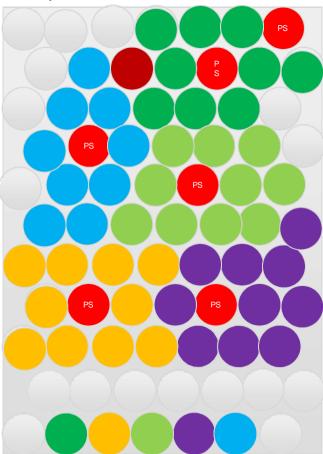
<u>Product assumptions</u>: T_g = -27°C; drying **above** T_g ; **8%** solute conc. Target T_p = -25 °C or -23 °C

Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2°	Manual mode: stooper ing
Time (hh:mm)		0:15	01:00	0:45						06:00	
Shelf temp. (°C)	20	5									
Vacuum (mbar)	off	off	off	off	off						750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)		15	60	1	5	10	10	10	10	60	

- 1. Compounding of formulations
 - Calculation of composition (seminar room)
 - Compounding (lab)
- 2. Filling
- 3. Stoppering
- 4. Freezing experiment with distilled water under vacuum to develop a general understanding of the critical temperature

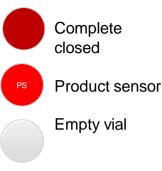
Materials:

- active ingredients and excipients (BSA, Sucrose, Mannitol, His, HisHCl-H2O, PS20)
- water for injection
- Schott bottles and beakers; measuring cylinder
- calculator
- scale, magnetic stirrer, spatula
- pH-meter
- pipettes
- 20 mL vials
- lyo stoppers
- thermo couples/ product sensors (2. day)



Composition of formulations

#	Formulation	BSA	Excipient	Solid content (excipients)	Buffer system	Surfactant	T _g '/T _{eu}	Fill volume		
1	Formulation 1	25 mg/mL	240 mM Sucrose	~80 mg/mL				~ -27	10 mL	
2	Formulation 2/3	-	240 mM	~80 mg/mL	20 mM	0.02%	~ -32	10 mL		
3			Sucrose		HisHCl pH 6.0	(w/v)		5 mL		
4	Formulation 4	-	120 mM Sucrose	~40 mg/mL		Polysorbat 20	~ -32	10 mL		
5	Formulation 5	-	220 mM Mannitol	~40 mg/mL			~-1	10 mL		


Preparation - Loading

Proposal:

- 3 Lyophilizers / 3 groups
- One shelf (77 vials) will be fully loaded per group and lyophilizer
- Prepare your own loading scheme with different formulations including PAT sensors

- Calculate the volume needed per formulation depending on the loading scheme. Account for at least 20% overage.
- 2. Calculate the amount of excipients.
- 3. Calculate the amount of buffer needed.

As we are 3 groups – please consolidate and discuss who is preparing what and how much!

Composition of formulations:

Formulation #	Number of vials	Fill volume	Total volume needed	Total volume prepared* (L)	BSA concentration (mg/mL)	BSA (g)	Excipient concentration (mM)	Excipient concentration (g/L)	Excipient (mg)	Tensid + buffer system
1		10 mL			25 mg/mL		240 mM Sucrose			
2		10 mL			-	-	240 mM Sucrose			20 mM HisHCl pH 6.0:
3		5 mL			-	-				+
4		10 mL			-	-	120 mM Sucrose			0.02% (w/v) PS20
5		10 mL			-	-	220 mM Mannitol			
Total										
* Include 10% los	5									

Include 10% loss

<u>Molar Mass:</u> Sucrose 342.3 g/mol Mannitol 182.2 g/mol

Buffer receipt 1L:

- 2.196 g of His-HCI Monohydrat

- 1.477 g of Histidin, freie Base

- Ad 1 L with water

- 1. Prepare the buffer and add the surfactant.
- 2. Compound the formulations by using the prepared buffer system
- 3. Fill the formulations into the glass vials and stopper them completely
- 4. Position the stoppers to allow for sublimation (semi-stoppered position)
- 5. Position the thermo couples
- 6. Load the lyophilizer
- 7. Program your recipe (Theory 3) and install/connect all PAT tools that you would like to use
- 8. Start the program and see the magic happen \odot