pda.org

Theory 3

Dr. Julian Lenger

Scientific Head in Drug Product Development at Bayer AG

julianh.lenger@gmail.com

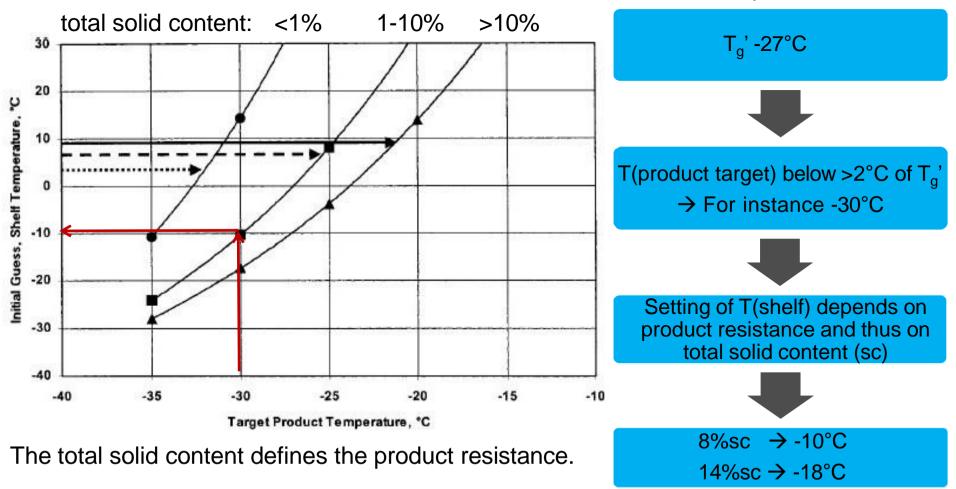
PDA EU Freeze – Drying in Practice

12 – 16 June 2023 Martin Christ Osterode am Harz, Germany

Adapted from slides originally created by and with courtesy of PD Dr. Andrea Allmendinger

- Development of a lyophilization cycle
 - Which are the most important parameters?
 - How to choose them?
 - What happens if they are not chosen adequately?
- Finalization of cycles for practical work including choice of PAT tools

- 1. Shelf temperature
 - 1°drying
 - 2°drying
- 2. Chamber pressure
- 3. Drying time (isothermal hold time)
- 4. Ramp time


Xiaolin (Charlie) Tang¹ and Michael J. Pikal^{1,2}

Review

Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice

Shelf temperature

Initial shelf temperature estimation:

Connecting People, Science and Regulation®

Literature recommendation:

Figure reprinted from Tang X, Pikal MJ. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm Res. 2004;21(2):191–200. Copyright © 2004, Plenum Publishing Corporation

Chamber pressure > Vapor pressure

500 mTorr

Chamber pressure < Vapor pressure

100 mTorr

- Vapor pressure of ice at -30°C \rightarrow 380 µbar = 290 mTorr
- Rule of thumb for chamber pressure setpoint: 20-30% of vapor pressure at target product temperature
 For target T_p = -30°C → 26% * 380 µbar = ~100 mbar = 75 mTorr
- Alternative: $P_c = 0.29 \cdot 10^{(0.019 \cdot T_p)}$ For instance: P_c (Torr) = 0.29*10^(0.019*(-30)) $P_c = 0.078$ Torr = 78 mTorr

Connecting People, Science and Regulation

Equation taken from:

Tang X, Pikal MJ. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm Res. 2004;21(2):191–200.

Vapor Pressure of Ice

In contact with its own vapor

Temp	Va	apor Pressu	Ire	Temp	Va	Vapor Pressure			
°C	Pa	μmHg	ubar	°C	Pa	µmHg	µbar		
0	611.1	4584.4	6111	-42	10.22	76.6	102		
-2	517.7	3883.6	5177	-44	8.10	60.8	81		
-4	437.4	3281.6	4374	-46	6.39	48.0	64		
-6	368.7	2765.9	3687	-48	5.03	37.7	50		
-8	309.9	2325.1	3099	-50	3.94	29.5	39		
-10	259.9	1949.4	2599	-52	3.07	23.0	31		
-12	217.3	1630.0	2173	-54	2.38	17.9	24		
-14	181.2	1359.1	1812	-56	1.84	13.8	18		
-16	150.6	1130.1	1506	-58	1.41	10.6	14		
-18	124.9	936.9	1249	-60	1.08	8.1	11		
-20	103.2	774.4	1032	-62	0.82	6.2	8.2		
-22	85.07	638.2	851	-64	0.62	4.7	6.2		
-24	69.88	524.3	699	-66	0.47	3.5	4.7		
-26	57.23	429.3	572	-68	0.35	2.6	3.5		
-28	46.71	350.4	467	-70	0.26	2.0	2.6		
-30	38.00	285.1	380	-72	0.19	1.5	1.9		
-32	30.81	231.1	308	-74	0.14	1.1	1.4		
-34	24.89	186.7	249	-76	0.10	0.8	1.0		
-36	20.03	150.3	200	-78	0.08	0.6	0.8		
-38	16.07	120.5	161	-80	0.05	0.4	0.5		
-40	12.84	96.3	128	-82	0.04	0.3	0.4		

1 mbar = 750.1 microns

1 micron = 0.1333 Pa

1 Pa = 7.5006 microns

1 mbar = 100 Pa

1 micron = 0.0013 mbar

1 Pa = 0.01 mbar

mbar (cgs units) = millibar (10 E3 dyns/cm sq) microns = micrometers of mercury Pa (SI units) = Pascals (N/m²) micron = μmHg = mTorr

Connecting People, Science and Regulation®

Development of a lyophilization cycle

- 1. Shelf temperature
 - 1° drying \rightarrow T_g' and T(collapse)
 - 2° drying $\rightarrow T_g!$
- 2. Chamber vacuum
- 3. Drying time \rightarrow product sensors, Pirani/MKS, pressure rise test

To keep in mind:

- T(product) needs to be kept lower than T_g ' and T(collapse)
- Practice: Different formulation have different Tg' !

PAT	Epsilon 2-6D Lyo I	Epsilon 2-6D Lyo II	Epsilon2-4 Lyo III
Pirani	Х	Х	Х
MKS	Х	Х	-
Comparative pressure measurement	Х	Х	-
PT100 (TC)	Х	Х	Х
WTM+ (wireless TC)	Х	Х	Х
LyoRx	Х	Х	Х
Lyobalance	-	-	-
LyoCam	Х	Х	Х
Controlled nucleation	Х	-	-
Mass spectrometry	-	Х	-
ΔP/Δt	Х	Х	-

End point detection

- Time defined cycles versus PAT
 - $-\Delta$ T product (°C)
 - $-\Delta$ T shelf (°C)
 - Comparative pressure measurement
 - Pressure rise test

Lyophilization Program

working sheet Conservative

Regulation of vacuum:
□Pirani
□MKS

<u>Product assumptions</u>: T_g = -32 °C; drying safely **below** T_g ; 8% solute conc. Target $T_p = -34$ °C

Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2°	Manual mode: stooper ing
Time (hh:mm)		0:15	01:00	0:45	03:30	0:01	0:18	49:00	3:55 (0.2K/ min)	06:00	
Shelf temp. (°C)	20	5	5	-40	-40	-40	-22	-22	25	25	
Vacuum (mbar)	off	off	off	off	off	0.14	0.14	0.14	0.14	0.14	750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)	1900 P 2010 RP9112110	15	60	1	5	10	10	10	10	60	

connecting People, Science and Regulation

EXAMPLE 1EXAMPLE 1EXAMPLE

								ρ			
Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2° drying	Manual mode: stooper ing
Time (hh:mm)		0:25	01:00	0:35	03:30	0:01	0:25	30:00?**	03:20 (0.2 K/min)	06:00	
Shelf temp. (°C)	20	-5	-5*	-40	-40	-40	-15	-15	25	25	
Vacuum (mbar)	off	off	off	off	off	0.096 or 0.1 mbar	0.096 or 0.1 mbar	0.096 or 0.1 mbar	0.096 or 0.1 mbar	0.096 or 0.1 mbar	750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)		15	60	1	5	10	10	10	10	60	

*Controlled Nucleation after 1h hold time, hold time 15min, nuc at 7 mbar

**Comparative pressure measurement (10-15% difference)

Lyophilization Program

working sheet Aggressive

Regulation of vacuum: \Box Pirani \Box MKS

<u>Product assumptions</u>: T_g = -27°C; drying **above** T_g ; **8%** solute conc. Target T_p = -25 °C or -23 °C

Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2° drying	Manual mode: stooper ing
Time (hh:mm)		0:15	01:00	0:45	03:30	0:15	00:60	15:00?*	00:05	06:00	
Shelf temp. (°C)	20	5	5	-40	-40	-40	20	20	25	25	
Vacuum (mbar)	off	off	off	off	off	0.14	0.14	0.14	0.14	0.14	750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)		15	60	1	5	10	10	10	10	60	

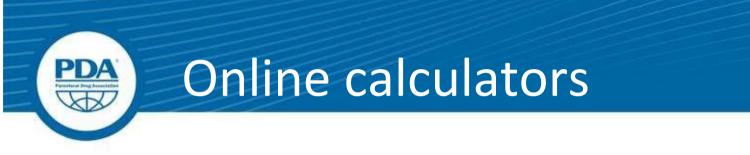
Connecting People, Science and Regulation®

**Comparative pressure measurement (10-15% difference)

Journal of Pharmaceutical Sciences 108 (2019) 1423-1433

Pharmaceutical Biotechnology

Lyophilization Process Design and Development: A Single-Step Drying Approach


Check for updates

Swapnil K. Pansare, Sajal M. Patel^{*}

MedImmune, LLC, Dosage Form Design and Development Gaithersburg, Maryland 20878

- Tempting approach, but several limitations:
 - Comparably high protein conc. ≥ 50 g/L and moderate fill height feasible
 - More pronounced scale-up challenges: choked flow, condenser overload

• Primary drying takes place in non-steady state during shelf ramping Connecting People, Science and Regulation

- SP Scientific LyoCalculator based on Pikal equations
 - Not officially available anymore, but still can be accessed <u>here</u>
 <u>http://web.archive.org/web/20200924004836/http:/www.spscientific.com/L</u>
 <u>voCalc/Lyocalculator.html</u>
- LyoPRONTO
 - Open source, theoretical assumptions in journal article
 - extended features (freezing calc, primary drying calc, design space calc, primary drying optimizer), but needs more advanced knowledge

http://lyopronto.rcac.purdue.edu/