

# Theory 7, PDA-Seminar

# Maintenance and fault correction

# 2023 PDA Europe Freeze Drying in Practice





## **Outline**

CHAPTER I: Introduction to a preventive maintenance concept

- What is & Why maintenance?
- PM, CM, PdM
- Responsibility

CHAPTER II: Introduction to the most frequently occurring faults

- Diagnosis, causes, correction
- Failure report
- Presentation of examples of def. Components with explanation of causes

#### **CHAPTER III: Documents**

- Overview
- AMC, Maintenance Plan, Checklist, Protocol
- Spare parts



# Introduction to a preventive maintenance concept





### What is Maintenance?

- Definition: "Activities required or undertaken to conserve as nearly and as long as possible the original condition of an asset or resource while compensating for normal wear and tear."
- Important: Maintenance is the <u>combination</u> of all technical and associated <u>administrative</u> actions intended to retain an item in, or restore it to, a state in which it can perform its required function. → Responsibility
- Types of Maintenance:
   European standard EN31051 explicitly names and defines basic measures and is structured in maintenance types.

"Maintenance" is a combination of different administrative and technical measures

- Inspection
- Preventive and scheduled maintenance
- Corrective maintenance
- Improvement



# Why Maintenance?

- Maintenance is required to ...
  - …assure faultless operation
  - ...prevent large and costly repairs
  - ...avoid time consuming failure analysis in case the root cause is not obvious
  - ...prevent downtime and therefore production loss
  - ...avoid (hazardous) risk to operators
  - ...set a defined (validated) status of equipment as per protocol



Comparison of different maintenance tasks as a single or combined action Which of below measure is an appropriate maintenance concept?

## **Maintenance tasks**

Inspection

preventive maintenance

Corrective maintenance

Predictive maintenance

Improvement



activites to reduce wear stock



after wear, malfunction or breakdown



techniques that help forcasting maintenance



a process making something better

assessing the actual condition of a unit



# PM: Inspection and Preventive maintenance

- The primary goal of PM is to avoid consequences of failure of equipment.
- This can be done by preventing the failure before they occur or turn into major defects by the following actions:
  - 1. Daily systematic check-ups & inspection
  - 2. Calibration, measurements & adjustments
  - 3. Planned shutdowns or
  - 4. Annual maintenance as per "maintenance protocol" or "checklist"
    - replace gaskets, o-rings, membranes
    - replace or refill liquids
    - grease, paint, insulate,...

PM = relies on average and expected life statistics to predict when maintenance will be required.





## **CM:** Corrective maintenance

- CM is a maintenance task performed to identify, isolate, and rectify a fault so that the failed equipment, machine, or system can be restored to an operational condition within the tolerances or limits
- A corrective action to bring back to system into an operational state by
  - replacing defective components
  - repair damage or defective components or modules
- Negative impact:
  - is the time delay (down time of machine)!
  - Lead time for planning, spare parts and manpower
  - Especially within a GMP environment not acceptable approach.

CM = Restore systems functionality after occurring failures.



## **PdM: Predictive maintenance**

- PdM techniques are designed to help determine the condition of in-service equipment in order to predict (forecast) when maintenance should be performed.
- For PM it is necessary to permanent collect data from the actual condition of the equipment.
  - Compare batch records for abnormalities (i.e aging effects)
  - Frequency of actuations or switching frequency (i.e. valves)
  - Running times of equipment and stress analysis
- Positive: right action in the right time. Cost efficient.

PdM = differs from PM because it relies on actual condition of equipment. PM relies on average and expected life statistics.

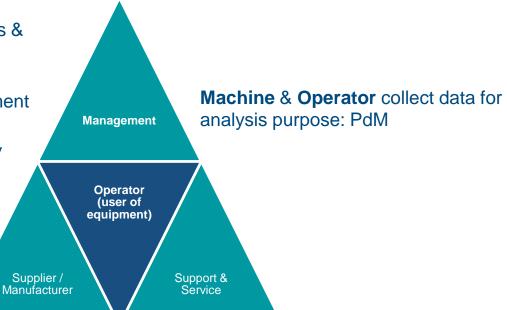


# **IMP: Improvement maintenance**

- Techniques undertaken to make an asset better or more capable to its duties
- Improvements can include
  - replacing components with more sustainable, rugged or accurate of its kind
  - Updates for software, firmware, operating system,...
  - Replacement of gases, liquids (i.e. refrigerants phase-down)
  - Retrofit, overhaul
- Positive: keep the system up to date with lates technology






# Responsibility - Maintenance is not a one man show!

Maintenance is an <u>administrative</u>
<u>responsibility</u>! It is a **management**responsibility to provide resources, money
and time to plan maintenance

**Operator** follow Daily systematic check-ups & inspections recommendations and assure availability of peripheral media: PM

 Operators are responsible for equipment (DGUVV3) (EN378)

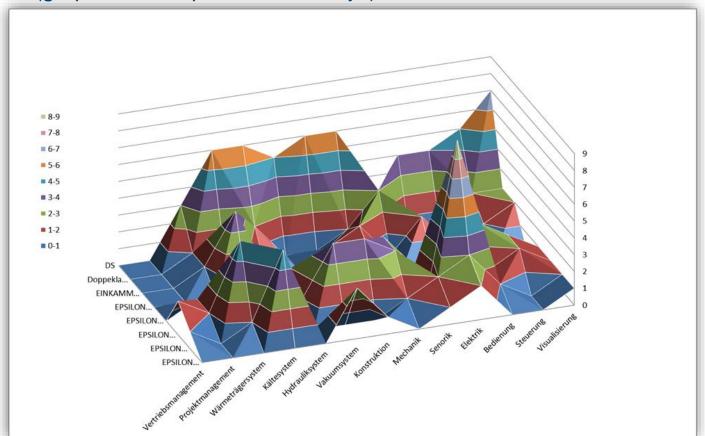
Operators are responsible thoroughly documentation towards authorities



**Suppliers** provide documents (Maintenance-Plan) acc. to OEM documentation and detailed lifetime considerations (Failure reports).

**Support** provides service according to Maintenance-Checklist/Protocol: PM Suggest improvements, weak point, updates,...

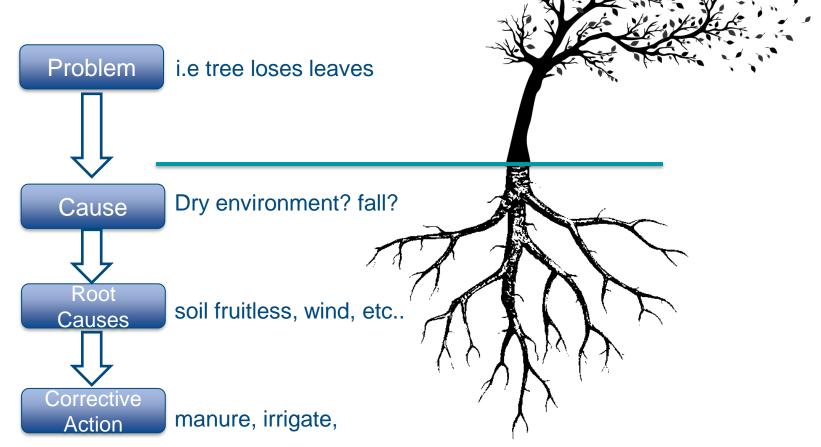



# Introduction to the most frequently occurring faults





# Failure and fault report

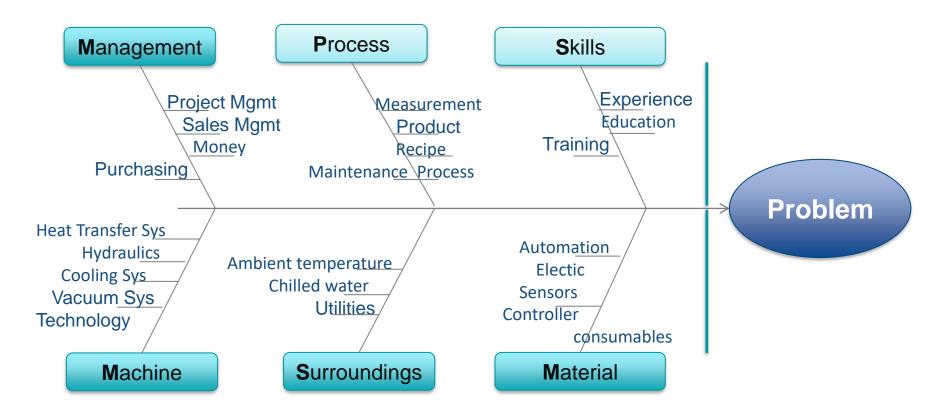

- Definition of fault: "a defect, imperfection or wrongful act" -> abnormality
- A database of failures can help to trace weak points and help to generate remedial actions (graphic shows peaks and valleys)





# Diagnosis, causes, correction

Each failure (effect) has a source of different causes. We are trying to find the *root cause* of a problem






# Diagnosis, causes, correction

Root cause analysis is going back to the 60th, were *Kaoru Ishikawa* invented a diagram Root cause analysis is intended to reveal relationships

Each potential cause is tracked back to reveal the root cause (The 3Ss, 5Ms)





# Database collecting and sort data

The more complex a functional unit, the more components involved

Collect and transfer all data (facts) into Database and investigate

Draw major categories; i.e. Management, Process, Skills, Material, Environment

Categorize and brainstorm causes

Start questioning (Why) to determine deeper causes and identify root causes





# Introduction to the most frequently occuring faults

#### General terms:

- Failure database: gathering failures and incidents to determine critical points (week point analysis) to prevent "frequently occurring faults"
  - Using methods such as 5D or 8D reports (D = disciplines, automotive)
  - Asking the following to reveal the trigger

1. Effect: What happened?

2. Action: Immediate response required by/with?

3. Measure: How to solve it ? → Corrective Action

4. RCA: Why did it happen?

5. Virtue: How to avoid in future? → Preventive Action

- Just identifying and replacing i.e a defective component is not the solution RCA (root cause analysis) starts at this point with questioning.
- Similar approach is CAPA, 6σ DMAIC (Define Measure Analyse Improve Control)



**Effect:** vacuum leak observed during Sublimation-phase. **Cause:** destroyed/burned diaphragm of steam inlet valve

- Why is the membrane destroyed?
- Why not replaced/uncovered?
- Why was the membrane beyond its useful service life?
- Why not capable to resist steam temperature?
- No manufacturers batch issue
- No missing maintenance as it was replaced a week before
- Not installed in a wrong manner

#### Root cause:

- Steam generator runs at wrong offset
- Steam temperature to high (pressure) and exceeding the spec limit.
- Operators trained according to utility specification





**Effect:** Vacuum performance out of spec.

Cause: Vacuum pump oil mixed with condensate (water).

- Why is the oil contaminated?
- Why was vapor not collected by ice condenser?
- Why was the oil not replaced?
- Why not adapted the recipe?
- No recipe change possible as validated cycle
- Oil not replaced as not realized

#### Root cause:

- Recipe created lots of vapor
- Ice condenser capacity reached
- Operators do not change oil frequently

#### **Corrective action:**

- Replaced oils sealed pump with dry pump
- Adapted batch size and recipe





**Effect:** overload of Vacuum Pump motor.

Cause: Blocked Vacuum Pump exhaust filter



#### **Root cause:**

- No maintenance happened
- Operators not aware (trained)



**Effect:** Refrigeration System fails due to excess pressure **Cause:** Algae causes insulation layer in watercondenser



#### **Root cause:**

- No maintenance happened
- No agent added to chiller (i.e. glycol)



**Effect:** Vacuum leakages Cause: Porous o-rings



#### **Root cause:**

"No maintenance" philosophy by management

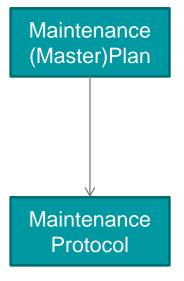


**Effect:** Leaking silicon oil though ss-hose **Cause:** pinhole at stainless steal hose



#### **Root cause:**

- No 10 year maintenance happened
- Friction between hoses, routing to be optimized




# **Documents**





## **Document order and content**



Includes all necessary information: What, how, specs, spares, maintenance, OEM manuals, P&ID and electrical drawings ... Maintenance Plan also considers information from "Failure Report database"

Maintenance protocol describes all relevant points in a protocol manner.

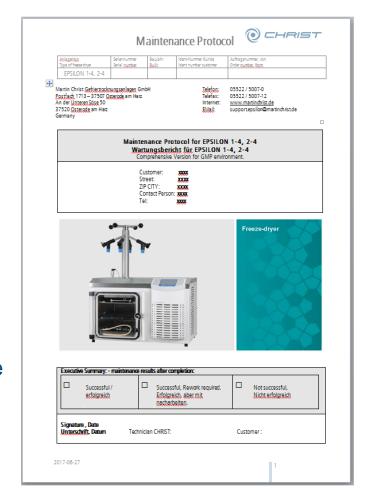


## **Maintenance Plan**

Maintenance (Master)Plan



Structure according to electrical drawings E-Plan






## **Maintenance Protocol**

Maintenance Checklist

 Maintenance plan to prove actions taken





## **Maintenance conclusion**

- An appropriated maintenance concept is a combination of different administrative and technical measures
- A maintenance plan (individually adapted) provides required information and based on that a maintenance protocol is generated
- The **maintenance protocol** provides requirements and recommendations for the user and operator to assure and increase availability of the equipment and helps to discover wear and tear in defined intervals.
- Supplier or distributors provide maintenance contracts (AMC). This should include a mixture of inspection and replacement of wear parts. Advantage: The customer is always on the safe side as suppliers latest findings (weak point analysis, improvements) can be considered during PM.
- Critical items/parts are stored near the machine to reduce lead time for order and shipping.



# **Questions?**





## **Contact**

Markus Wehner

Martin Christ Gefriertrocknungsanlagen GmbH

An der Unteren Söse 50, 37520 Osterode am Harz

Phone: +49 5522 5007 8521

Fax: +49 5522 5007 9521

Mail: m.wehner@martinchrist.de

