All about Pre-filled Syringe Systems

From Initial Development to Final Fill Finish

Technical Aspects

Christa Jansen-Otten Bernd Zeiss Gothenburg, October 19th and 20th 2023

Overview and Introduction into Pre-filled Syringe Market *Overview & Trends • Stakeholders • User's perspective*

Technical Aspects

Syringe • Plunger • Needle • Needle shield or Tip cap • Autoinjector • Regulatory guidelines and technical standards

Overview & Introduction into Drug-Syringe Interactions Aggregation • Degeneration • Oxidation • Viscosity • Bubbles

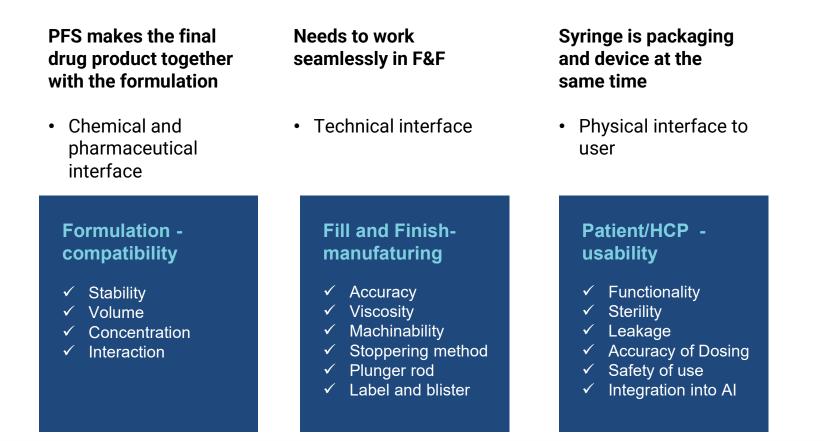
Overview & Introduction to manufacturing Process of PFS

Syringes Barrel Forming • Washing • Siliconization • Sterilization • Regulatory guidelines and technical standards ...

Fill and Finish

Filling • Stoppering • Assembly • Technical Standards

Hands-on Session 1


Requirements towards Injections and Ophthalmics*

- Packaging Description is part of the Registration Dossier
- Material in direct contact to the dosage form
- Storage/stability transport functionality (prefilled syringe is a device)
- Standards help all stakeholders

Protection	Compatibility	Safety	Performance
 ✓ Temperature ✓ Light ✓ Water loss ✓ Loss of solvent ✓ Oxygen ✓ Microbial ingress 	 ✓ Adsorption ✓ pH change ✓ Precipitation ✓ Colour change ✓ Packaging brittleness 	 ✓ Leachables ✓ Extractables ✓ Toxicity ✓ Glue or ink migration ✓ Breakage, drop test 	 ✓ CCI ✓ Drug delivery ✓ NS pull off ✓ Break loose and gliding ✓ Usability: elderly people, children ✓ Connections

Prefilled Syringes to fulfill many needs

pda.org

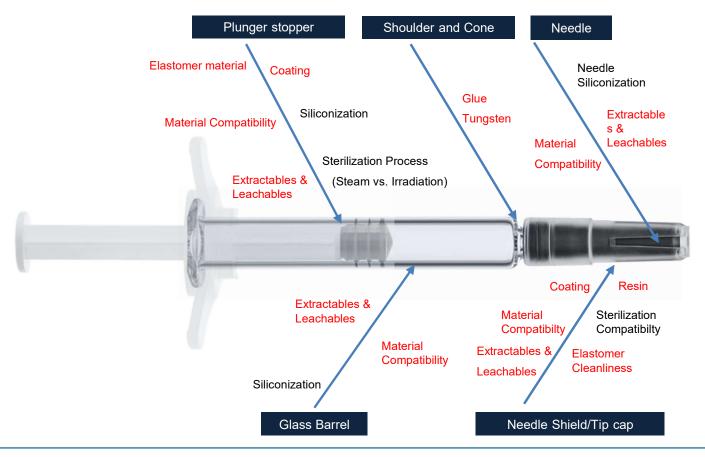
Regulatory Guidelines

Mainly Dimensions and Test methods

Relevant standards and regulations

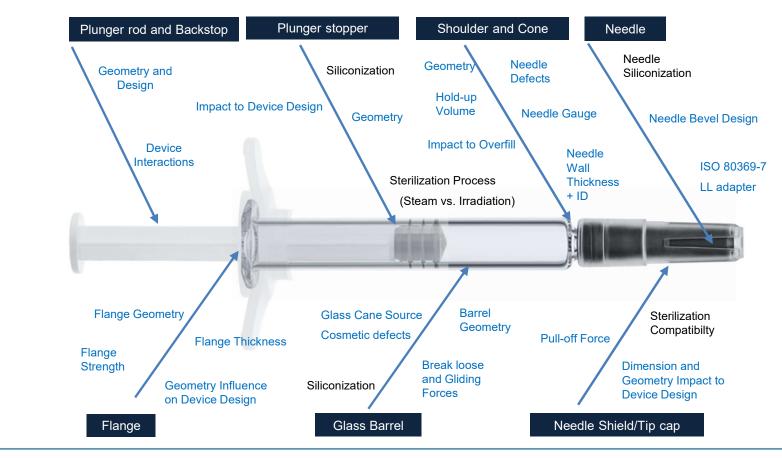
- ISO 11040-4: Glass syringes ready for filling
- ISO 80369-7: Luer connectors
- ISO 11040-5: Plunger stoppers
- ISO 11040-6: Plastic syringes ready for filling
- ISO 11040-7: Nest & tub
- ISO 11040-8: Test methods for finished prefilled syringes
- ISO 9001: Quality management
- ISO 15378: GMP Primary packaging
- 21 CFR 211 Subpart E Control of Components and Drug Product Containers and Closures
- DMF Type III
- Ph. Eur. USP and JP
- ASTM D4169-22 Shipping
- ASTM D6653-13 Plunger movement

• ...


0.5 ml	47.6	6.85	4.65
1.0 ml long	54.0	8.15	6.35
1.0 ml standard	35.7	10.85	8.65
1.5 ml	43.2	10.85	8.65
2.25 ml	54.4	10.85	8.65
3.0 ml	72.2	10.85	8.65
5.0 ml	66.8	14.45	11.85

PFS components - Pharmaco-chemical interfaces to the drug

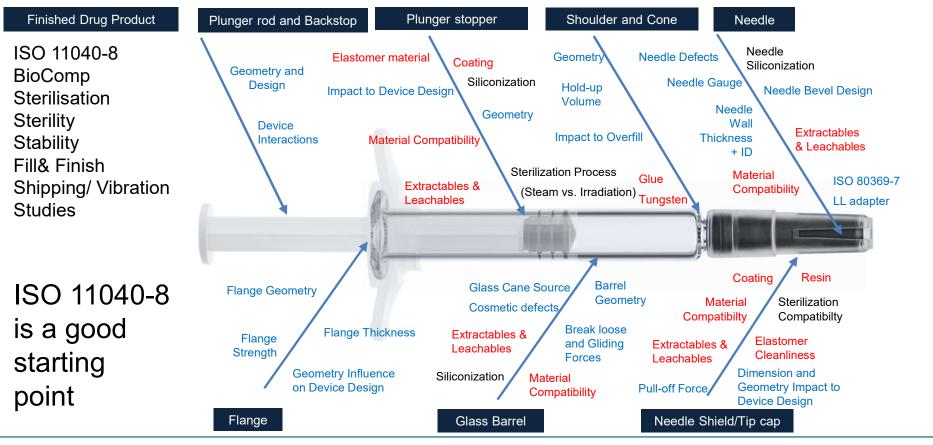
Adapted from David A. Post, Sherwin Shang, Shweta A. Raina, and William Szechinski. Development of Biopharmaceutical Drug-Device Products. PFS characterization and Interaction with Biologic Formulations. AAPS Advances in the Pharmaceutical Sciences Series 35, 2019 - 831 ff


PEOPLE

SCIENCEAND

REGULATION®

pda.org



Adapted from David A. Post, Sherwin Shang, Shweta A. Raina, and William Szechinski. Development of Biopharmaceutical Drug-Device Products. PFS characterization and Interaction with Biologic Formulations. AAPS Advances in the Pharmaceutical Sciences Series 35, 2019 - 831 ff

Does the syringe perform well with the formulation?

Adapted from David A. Post, Sherwin Shang, Shweta A. Raina, and William Szechinski. Development of Biopharmaceutical Drug-Device Products. PFS characterization and Interaction with Biologic Formulations. AAPS Advances in the Pharmaceutical Sciences Series 35, 2019 - 831 ff

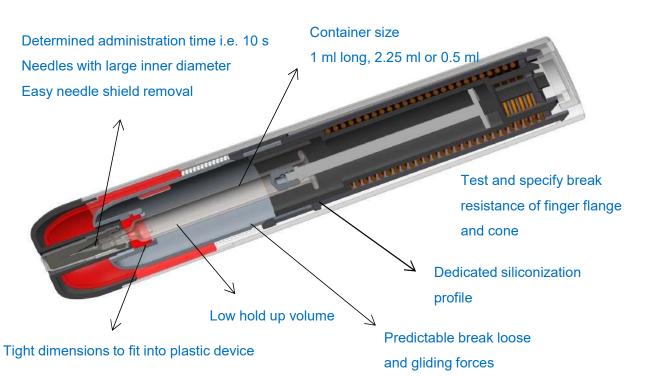
CONNECTING

PFOPI F

SCIENCEAND

REGULATION®

pda.org


How suppliers can support ISO 11040-8

1. User requirements	Pharma or supplier data	2. Performance requirements	Pharma or supplier data
Definition of intended use Risk management	Pharma Pharma, input from supplier	Break loose and extrusion forces	Pharma, general performance data (water filled syr) from supplier
Application of usability engineering	Pharma	Burst resistance	supplier
System characterization	Pharma	Break resistance: LL, FF	supplier
Description of components and materials Barrel – Flange, barrel, cone, needle, cap	Critical dimesions, Geometry, Strength, Extractables (tungsten, glue, siliconization), Glass source, Cosmetic defects, sterilization, pull-off force cap, CCI cap	Closure system forces and torques	supplier
		Connectivity with fluid path connectors	supplier
		Residual volume	Pharma, general performance data (water filled syr) from supplier
		Needle penetration force	Specification of supplier – not with tissue
		Needle pull-out force	Specification of supplier
Description of components and materials Plunger stoppers	Critical dimensions, Elastomer material Compatibility, Extractables, Coating, Geometry, Siliconization, Sterilization	Sharps injury protection requirements	Pharma
		Liquid leakage beyond plunger	Pharma, general performance data (water filled syr) from supplier
		Markings	Specification of supplier, accuracy t.b.tested by Pharma
		3. Pharmaceutical requirements	
Additional components: rod, backstop, Autoinjector, safety system	Pharma: Device interactions of syringe barrel, Luer lock adapter with attached	Drug-container interaction	Pharma, leachables, shear forces to be tested with drug
Description of the content of the	needle, autoinjector, needle safety device Pharma	Biological requirements	Pharma, general performance data (water filled syr) from supplier
finished prefilled syringe		Container closure integrity (plunger)	Pharma, general performance data (water filled syr) from supplier
Available from suppliers – can be supplied/tested without drug Pharma company input – no or limited data from supplier, drug needed		Deliverable volume	Pharma, general performance data (water filled syr) from supplier
		Particles (visible and subvisible)	Pharma, general performance data (water filled syr) from supplier

Syringe system with Autoinjector

Limit of syringes in Autoinjectors

- Dose volume < 3 ml
- Viscosity < 10 cP
- Subcutaneous application
- Mechanical (spring), ~10 s

→Wearables

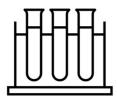
- Dose volume > 3ml
- Viscosity > 10 cP
- Subcutaneous
- Electric drive, minutes

→Infusion

- Intraveneous (vial + disposable syringe)
- home use limited

Advait V Badkar, Rajesh B Gandhi, Shawn P Davis & Michael J LaBarre (2021) Subcutaneous Delivery of High-Dose/Volume Biologics: Current Status and Prospect for Future Advancements, Drug Design, Development and Therapy, 15:, 159-170, DOI: <u>10.2147/DDDT.S287323</u>

pda.org



Regulatory Guidelines

ISO 10993-1 to-18 Biocompatibility: Biological evaluation of medical devices

- 1: Evaluation and testing
- 2: Animal welfare requirements
- 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity
- 4: Selection of tests for interactions with blood
- 5: Tests for in vitro cytotoxicity
- 6: Tests for local effects after implantation
- 7: Ethylene oxide sterilization residuals
- 8: Selection and qualification of reference materials for biological tests
- 9: Framework for identification and quantification of potential degradation products
- 10: Tests for irritation and delayed-type hypersensitivity
- 11: Tests for systemic toxicity
- 12: Sample preparation and reference materials
- 13: Identification and quantification of degradation products from polymeric medical devices
- 14: Identification and quantification of degradation products from ceramics
- 15: Identification and quantification of degradation products from metals and alloys
- 16: Toxicokinetic study design for degradation products and leachables
- 17: Establishment of allowable limits for leachable substances
- 18: Chemical characterization of materials

Global Pharmacopoeia

12 COPYRIGHT © PDA

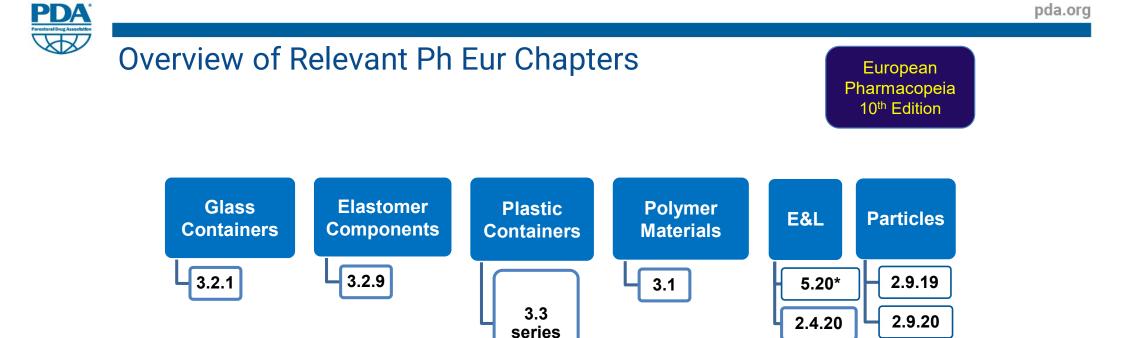
pda.org

Overview of Relevant USP Chapters USP U.S. Pharmacopeia **Plastics** Polymer Glass Elastomer E&L **Particles** Materials & Manufacturing **Components Containers** Components Packaging 1787 381 1660 1665 1663 1661 382** 1788 660 1664 665 661.1 1381 232* 1790 661.2 233 787 1382**

Chapters > 1000 informational Chapters < 1000 mandatory if required by monograph

- <231> has been deleted
- ** will be official 2025

CONNECTING PEOPLE SCIENCE AND REGULATION®


788

789

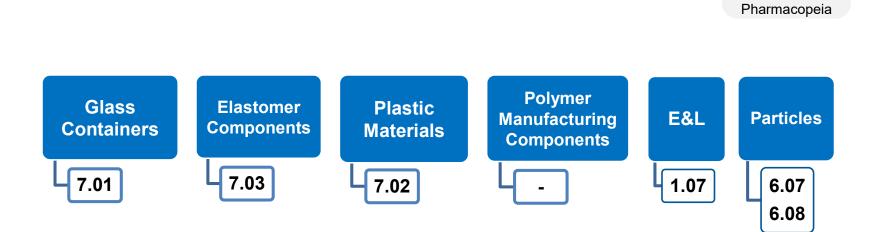
790

13 COPYRIGHT © PDA

pda.org

* 2.4.8 has been deleted

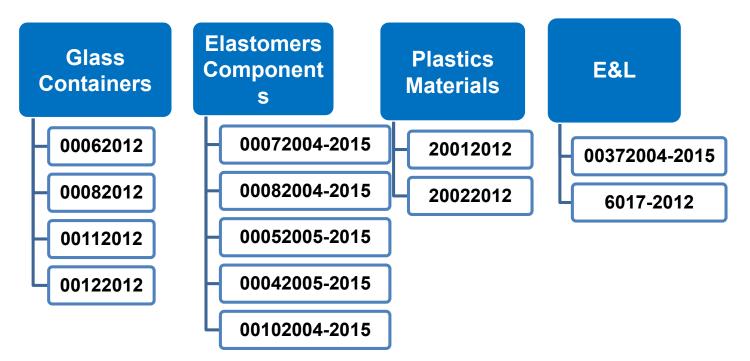
CONNECTING PEOPLE SCIENCE AND REGULATION®


pda.org

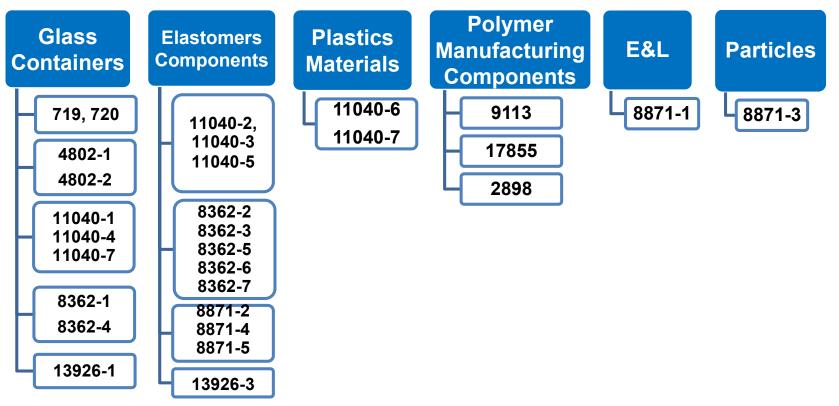
JP

Japanese

Overview of relevant JP Chapters

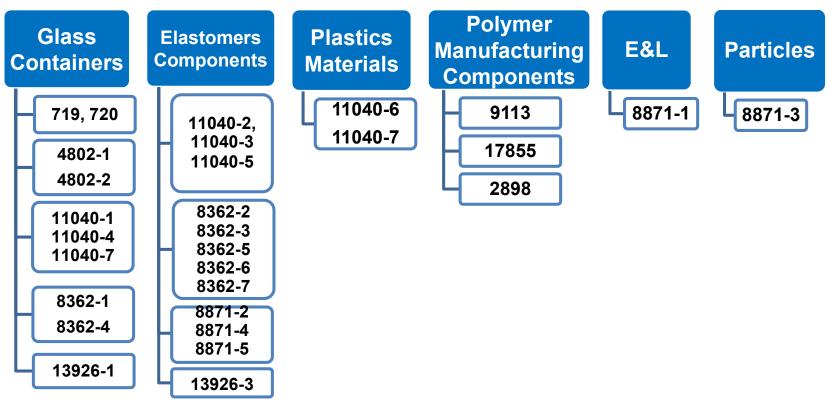


Examples of relevant YBB Standards


YBB standards are subsequently integrated into ChP for packaging material; 16 already became obsolete when ChP2020 became effective Dec 2020

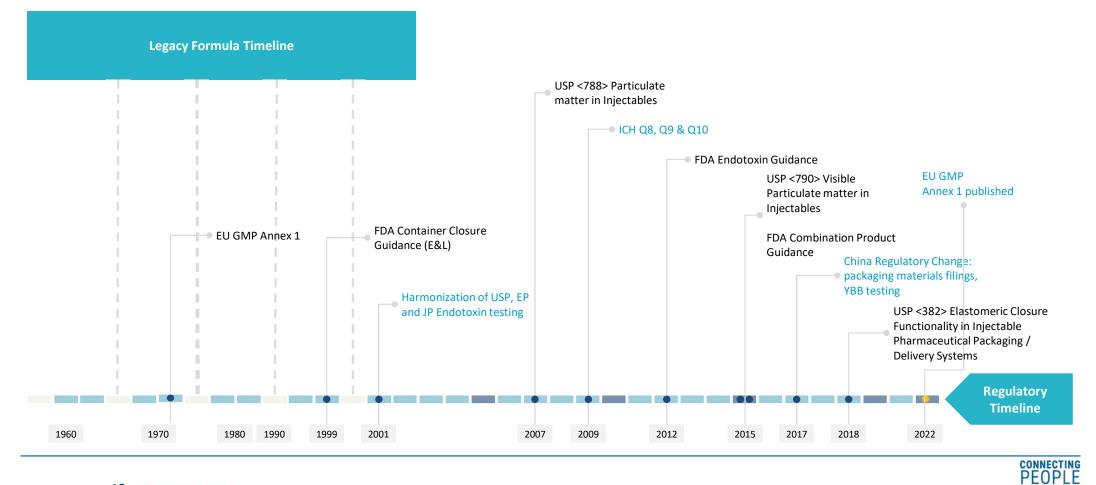
Extract of relevant ISO Standards

ISO



Extract of relevant ISO Standards

ISO



SCIENCE AND REGULATION®

Regulations Are Evolving

EU GMP Annex I: at a glance

Background

- Revision of Annex I *Manufacture of Sterile Medicinal Products* of the EU *Guidelines for good manufacturing practices for medicinal products*
- Will be endorsed globally
- Focus on Contamination Control Strategy
- Introduced & strongly recommended RABS & Isolators
- Focus on assurance of Container Closure Integrity
- Knowledge and Experience of the Container Closure System
- Primary Packaging components are also in scope

What does this mean for you

- Need to prove compliance
- Need to have a contamination control strategy document
- Information from suppliers is part of this

pda.org

0.5

New Process

in EU

EMA

& Notified Bodies

> Opinion GSPRs

Medical Device Regulation: At A Glance

Background

- Revision of Regulation 2017/745 on medical devices (MDR)
 Prefilled Syringe is a medical device
 - MAA needs a Notified Body Opinion (NBOp)
 - Need to fulfill Annex I General Safety and Performance Requirements (GSPRs)
 - GSPRs have been expanded significantly
 - Knowledge and Experience of the Container Closure System
 - Primary Packaging components are also in scope

What does this mean for you

- Need to obtain a NBOp
- Information from suppliers is part of this

Summary – Technical aspects

- Many physical and chemical factors to consider
- PFS is both drug delivery device and primary packaging container
- Component suppliers become system suppliers
- Regulation for prefilled syringes is complex start with ISO standards
- Comprehensive documentation and testing necessary
- Risk management:
 - Start with ISO standards finish with risk assessment
 - Regulations are evolving, two main topics Annex 1 and MDR
- Closer cooperation with component manufacturers necessary in future

pda.org

Sources

- FDA Guidance Container Closure Systems for Packaging Human Drugs and Biologics
- ISO 11040-4: Glass syringes ready for filling
- ISO 80369-7: Luer connectors
- ISO 11040-5: Plunger stoppers
- ISO 11040-6: Plastic syringes ready for filling
- ISO 11040-7: Nest & tub
- ISO 11040-8: Test methods for finished prefilled syringes
- ISO 9001: Quality management
- ISO 15378: GMP Primary packaging
- ISO 10993-1 to -18
- 21 CFR 211 Subpart E Control of Components and Drug Product Containers and Closures
- Ph. Eur. USP and JP
- ASTM D4169-22 Shipping
- ASTM D6653-13 Plunger movement
- Development of Biopharmaceutical Drug-Device Products. PFS characterization and Interaction with Biologic Formulations. David A. Post, Sherwin Shang, Shweta A. Raina, William Szechinski. AAPS Advances in the Pharmaceutical Sciences Series 35, 2019 831 ff
- Subcutaneous Delivery of High-Dose/Volume Biologics: Current Status and Prospect for Future Advancements: Advait V Badkar, Rajesh B Gandhi, Shawn P Davis & Michael J LaBarre (2021), Drug Design, Development and Therapy, 15:, 159-170, DOI: 10.2147/DDDT.S287323
- Structure of Technical Documentation (Medical Devices) (mdc-ce.de)

