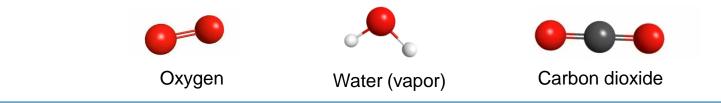
CCI testing throughout the product life-cycle

Using laser-based headspace analysis

What we do in a nutshell

Better and safer drugs for patients!



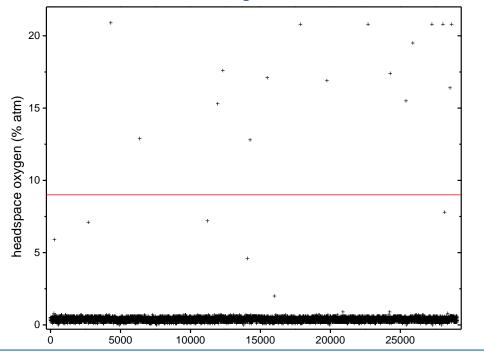
How we do that in a nutshell

Quantify headspace gas composition - non-destructively

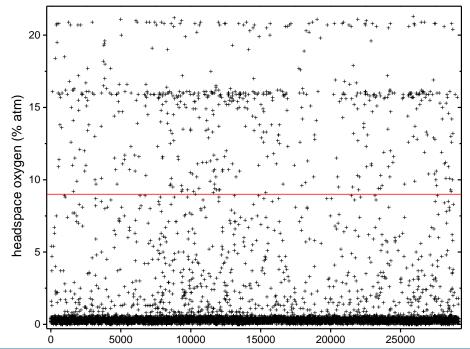
Case study 1 CCIT in an existing process

<u>Product specifications</u> Freeze dried with 0.2 atm nitrogen headspace

<u>Problem</u> QC identified vials that had lost vacuum.


→ Run 100% inspection

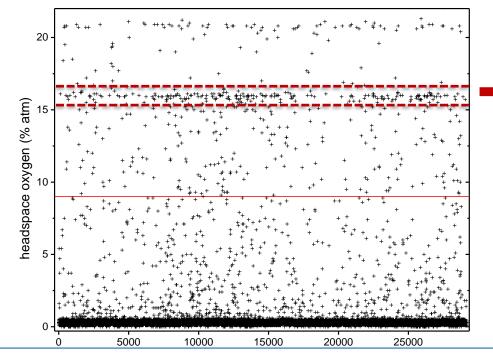
pda.ord



- Total batch size: 29048
- Number rejected: 16
- Reject rate: 0.06%

- Total batch size: 29156
- Number rejected: 568
- Reject rate: 1.95%

1	. Batch 1	Batch 2	Batch 3	Batch 4	Batch 5	Batch 6
20 -	* ***, - 4 4	* * • •		· · · ·		
Oxygen Concentration (% atm)				• • •		
- 01 10	• •					
				• * •		
- 0 -	0 2000	40000 e	0000 80000	100000	120000 14000	160000


Results of 6 chronological batches

Not a robust process

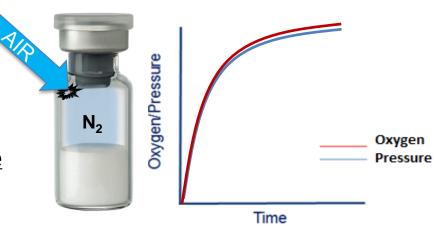
→ When would you discover this?

Headspace specified 0.2 atm N₂

- If 0.8 atm air enters vial = 16% O₂!
- Partial leaks stopped by capping

Theoretical background

Gas flow dynamics


Two ways gas can flow

Effusion

Gas flow driven by a <u>total pressure difference</u> across the defect

Diffusion

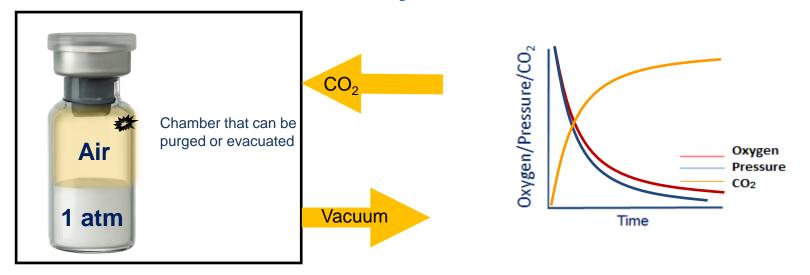
Gas flow driven by a <u>partial pressure difference</u> of that gas across the defect


Understanding gas flow enables development of CCI test methods based on gas ingress

Defect diameter

Oxygen Diffusion Example

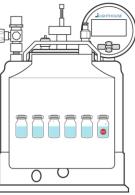
Theoretical model enables calculation of method sensitivity


 PDA Journal Nov-Dec 2017 issue (71): 'Method Development for CCI Evaluation via Gas Ingress by Using Frequency Modulation Spectroscopy' [K. Victor]. p 429-453.

What if the headspace is unmodified?

Use the same approach but change the outside environment

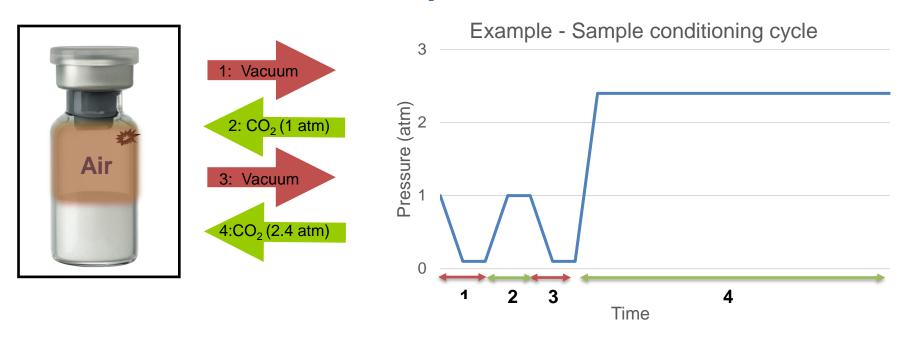
Case study 2 CCIT method development and validation



Gas Ingress Testing for CCI

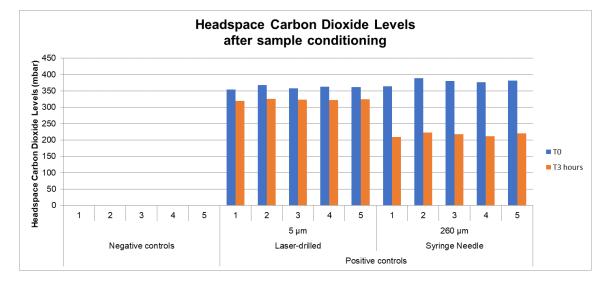
Objective

- Develop an approach similar to blue dye, but better
- Reliably detect critical leaks: 5µm defect <15 minutes



Method Development

Method Development: Vials


- Presence of product can affect defect detection.
- Defects type, size and location matters!

Defect type	Defect	Leak detected	
	location	PBS	BSA
2 µm laser-drilled	Above liquid	5/5	5/5
	Below liquid	1/5	1/5
5 µm laser-drilled	Above liquid	5/5	5/5
	Below liquid	5/5	4/5
10 µm laser-drilled	Above liquid	5/5	5/5
	Below liquid	5/5	5/5
Gross defect	Stopper	5/5	5/5
Negative control	NA	0/5	0/5

Method Development: Syringes

Method parameters based on results:

- Overpressure CO₂
- Time in vessel: 60 min
- Wait time after vessel:15 min
- Acceptance criteria: defect between 5µm and 260µm

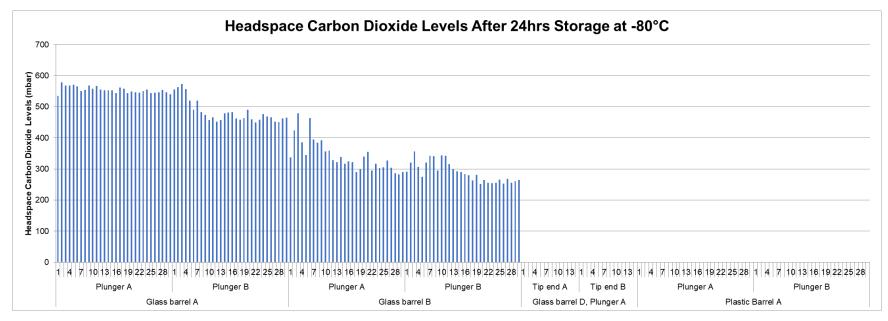
Case study 3 CCIT in Package Development

The curious case of temporary leaks

- On dry ice (-80 °C) the initial headspace condenses and creates **underpressure**
- The stopper can lose its elastic properties and closure can be lost
- Cold dense CO₂ from environment fills headspace
- Warming container to room temperature regains stopper elasticity and **reseals** closure
- Creating an overpressure
- Dye ingress cannot detect this!

CCI testing for syringes stored on dry ice

<u>Objective</u>


Determine optimal PFS packaging components to prevent loss of CCI during ultra cold storage and transport

Study setup Investigate multiple barrel, plunger and tip-end types Store on dry ice for at least 24 hours Measure headspace CO_2 levels

Packaging Component Selection

Lighthouse Offerings

Generate data for safer drugs

Headspace Analysis

Analytical services

Benchtop instruments

Automated inspection machines

Headspace gas ingress for CCIT

- Ingress of O_2 , N_2 and/or CO_2
- Analytical measurement
- Non-destructive method
- Permanent and temporary leaks
- Sensitive to all leak sizes
- Quantitatively described by gas flow physics

Thank you!

pda.org