Case Study: Systemic Evaluation of Vial Container Closure System Suitability at Frozen Conditions

- Christiana Oh, Ph.D., Eli Lilly and Company
- With Significant Contribution from Peter Sargent, Eli Lilly and Company

Agenda

- Background
- Risk Assessment
 - Suitability Hazards
- Phase based strategy
 - Screening Assessment
 - Development
 - Scale Up
- Takeaways

Background

Evolving needs for deep frozen storage

- Cell/gene therapies
- Vaccines

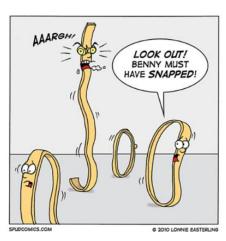
COVID-19 VACCINE STORAGE REQUIREMENTS **P**fizer moderna Johnson Johnson PRIOR TO VIAL USE: PRIOR TO VIAL USE: PRIOR TO VIAL USE: · Prior to thawing, store in an ultra-cold · Prior to puncturing the vial, the product . The product can be stored in two ways: freezer between -80°C to -60°C can be stored in three ways: - Refrigerated between 2°C and 8°C · Once thawed, the vial can be stored - Frozen between -25°C and -15°C for no more than 3 months undiluted in two ways: (Recommended unless immediate - Unrefrigerated between 9°C and use is necessary) - Up to 5 days in a refrigerator 25°C for up to 12 hours. - Refrigerated between 2°C and 8°C - No more than 30 minutes at room Once Vial is First Used: for up to 30 days temperature . The product can be stored in two ways: - Unrefrigerated for up to 12 hours Once Vial is First Used: Refrigerated between 2°C and 8°C Once Vial is First Used: · Store between 2°C and 25°C for no for up to 6 hours more than 6 hours Store between 2°C and 25°C for no. - At room temperature for up to 2 more than 6 hours. DO NOT REFREEZE DO NOT REFREEZE DO NOT REFREEZE ©2021 American Hospital Association | www.aha.org | March 2021

Opportunies for extended expiry

- Increased protein stability for biologics
- Establish shelf-life with limited stability knowledge

Risk Assessment: Suitability Hazards

Protection Risk


- Loss of elastomer elasticity below Tg
- Increased risk for breakage due to liquid expansion
- Difference of CTE (coefficient of thermal expansion)

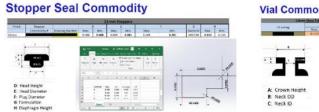
Performance Risk

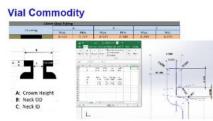
- Mechanical/thermal stresses of shipping
- Thermal stresses of processing streams
- In-use performance after thawing

Safety & Compatibility

Frozen conditions favorable for DP stability and E/L

Risk Assessment: Phased Approach


Stage Description	Screen	Confirm	Develop	Scale Up	
Activities	Form/Fit Concerns Finite Element Analysis	In-Use conditions CT X-Ray Inherent Leak (HeLD)	 Head Space Analysis Stability Shipping Hazards	Process Mapping Structural Integrity	
Phase	Ph 1/2				
Focus	Ph 3/ Primary Stability Design and Systemic Risk with Focus on Patient Safety Process Suitability and Business Risk				

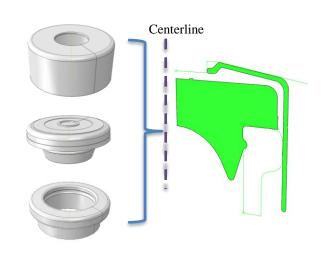

- Right size the approach
- Gate transitions between phases
- Expand the system boundaries

Screening: Form / Fit + Computed Aided Engineering

Form fit: Component Stack Tolerances

CAE / Modeling: characterize component Materials of Construction as inputs

Vials

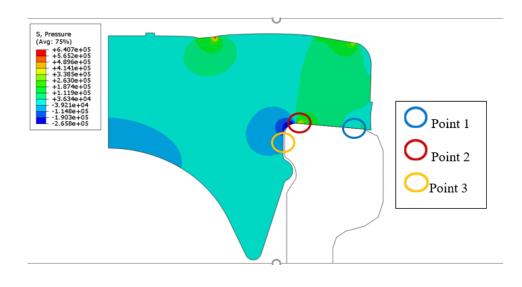

Assumed to be a rigid body

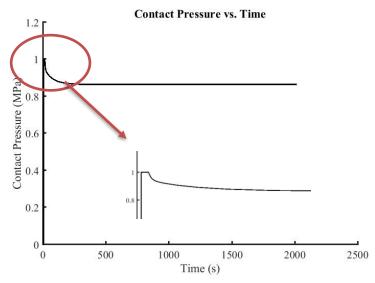
Elastomer

- Viscoelastic characterization > T_g
- Elasto-plastic characterization < T_a

Seals

- T_g
- CTE
- Poisson



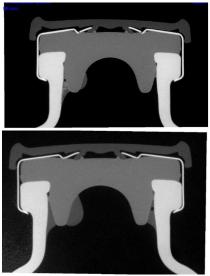


Screening: CAE

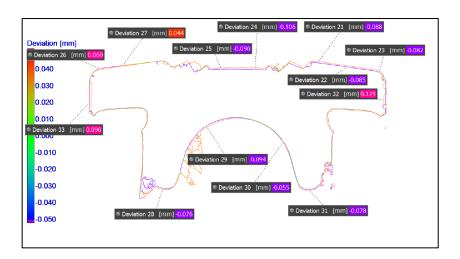
Evaluate contact pressure

- Consider shelf life
- Consider temperature

	Contact pressure (MPa)	Contact force (N)
Maximum	1	25.7
Relaxed	0.864	22.2



Development: CT Imaging


Confirm modeling assumptions via CT x-ray

Look for variance between normal conditions and frozen

Frozen

Development: CCI

Inherent Leak Rate

- Conduct as guided by USP <1207>
- Conduct at temperature via HELD
- Focused on design risk

Headspace Analysis

- Allows for CCI evaluation at in-use conditions
 - Incorporates temperature
 - Apply known shipping & shelf life constraints

- -78 °C, headspace underpressure
- Stopper loose elasticity, interface gaps
- CO₂ in headspace
- Warm up, stopper reseals
- CO₂ trapped

Scale Up: Approach

Shift the focus from systemic to residual risk

- Transition from design → process
- Emphasize control strategy development
 - Consider incoming, filling, and transit
 - Incorporate 2° packaging?
- Employ statistical powering

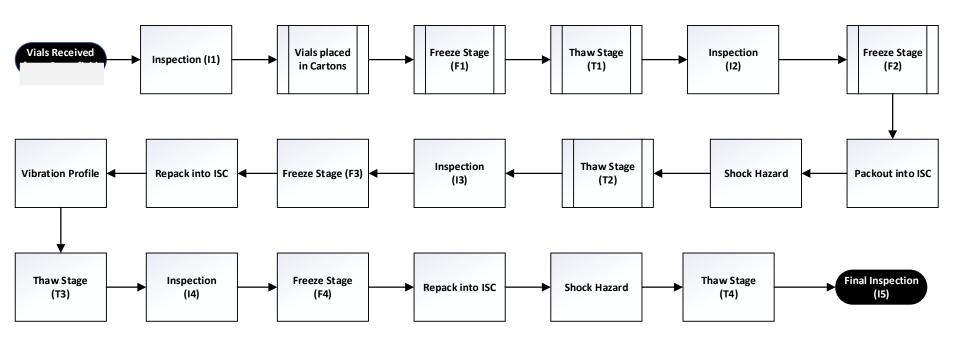
Scale Up: Structural Integrity

Hazards

- Liquid expansion at phase change
- Freeze/thaw at shipping nodes
- Mechanical stresses
 - Vibration and Drop during shipment
 - Glass to glass contact at filling

DOE considerations

- Storage Temperature/orientation
- Shipping conditions: temperature, method, e.g. dry ice
- Fill volume, CCS size
- Best outputs (RSF, CCI)



Scale Up: Process Mapping

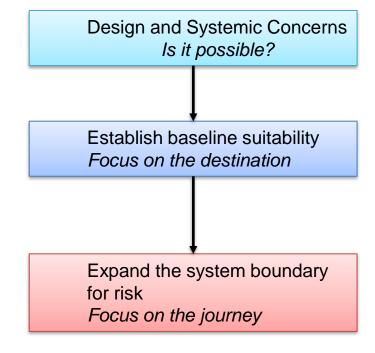
Process Mapping

- Understand temperature transitions
- Build in high-volume production hazards
- Adopt a statistical approach and foundation

Takeaways

Risk Assessment Strategy Use a right sized, phase approach

Screen for Form/Fit issues at 'standard' conditions


- Machinability studies
- Stacked Tolerance Analysis

Confirm & Develop frozen use conditions

- Identify lower temp. bound in storage and shipping
- Understand supply chain risk points
 - · Impact of Shipping Hazards
 - · Temperature transitions

Apply a world view in the scale up process

- Transition to outcomes thinking
- Propagation of stresses means propagation of risk

Acknolwedgments

- Craig Kemp
- Craig Goldhammer
- Lin Li
- Michael Foubert
- Vijay Sharma

- Lei Li
- Mark Beidelschies
- Michael Boquet
- David Lyngholm

