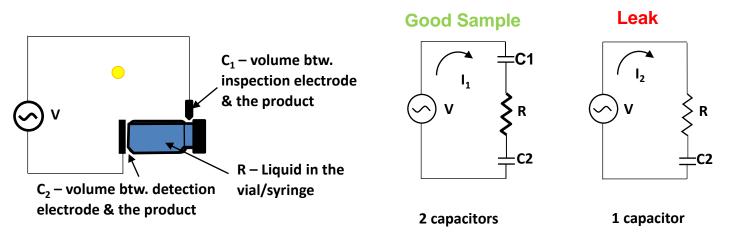
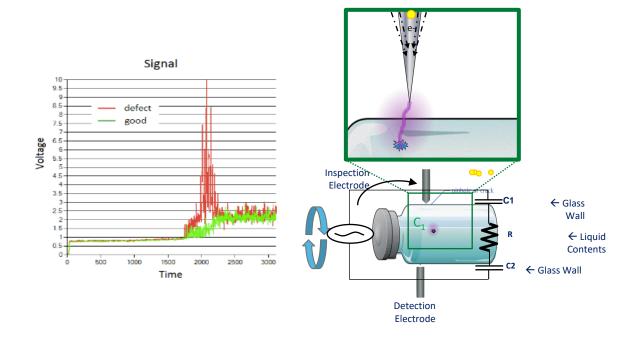
High Voltage Leak Detection (MicroCurrent). HVLD^{MC}

- Case Study: HVLD with Albumin Solution
- Case Study: HVLD Vs. Vacuum Decay with Albumin Solution

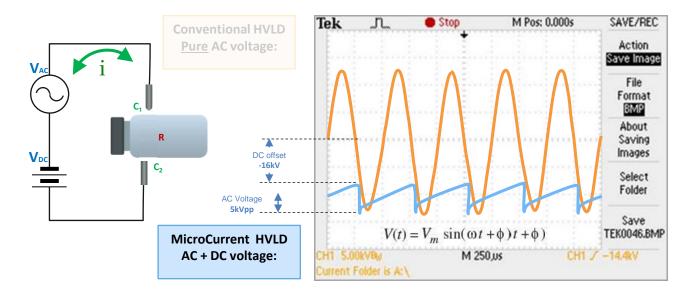

Amor Chabchoub CCIT Application Engineer PDA, Gothenburg 2023

Functional Principle of HVLD^{mc} Test

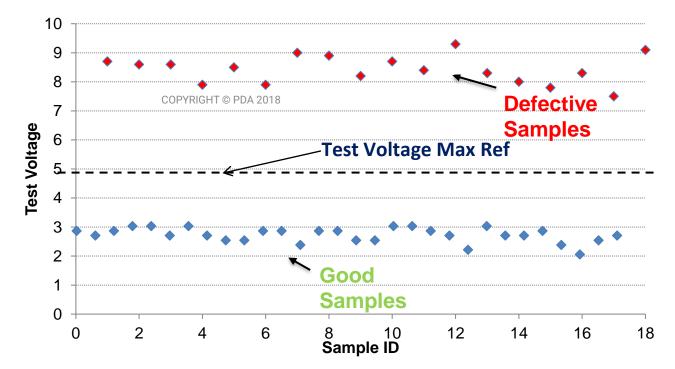

V – High Voltage Source

- R Electric Resistance of the product
- C_1 Capacitor 1: Glass between the inspection electrode and product
- C_2 Capacitor 2: Glass between the detection electrode and product
- I_1 current produced when product container is sealed
- I_2 current produced when product container is defective

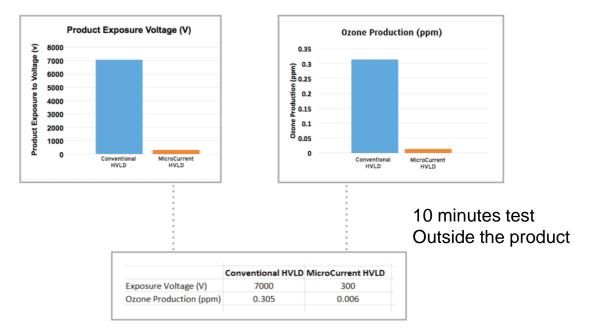
High Voltage Leak Detection (Microcurrent).



MicroCurrent HVLD^{mc}


This new technology applies less than *50% of the voltage* used with conventional high voltage technologies and the product its exposed to less than a *5% of the voltage exposure* experienced when testing with comparable HVLD solutions.

Voltage results for Negative and Positive Controls



Product HV Exposure

Ozone Creation

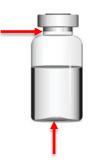
pda.org

Conventional AC based HVLD vs. MicroCurrent HVLD^{mc}

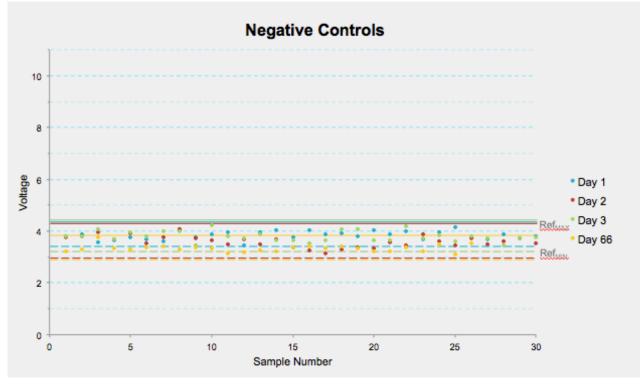
- With MicroCurrent HVLDmc the product is not exposed to HV (200-300V vs 7'000 - 10,000V+)
- Low Ozone production
- The current through the product is 2 3'000 times less than with conventional AC based HVLD systems >>> MicroCurrent
- MicroCurrent HVLDmc can measure low conductivity products < 1 micro Siemens
- MicroCurrent HVLD can inspect products containing alcohol
- MicroCurrent HVLDmc is capable of inspecting small Packages with low fill levels
- MicroCurrent HVLDmc does not adversely affect proteins
- MicroCurrent HVLDmc can detect defects under the crimping
- MicroCurrent HVLDmc can detect clogged cracks

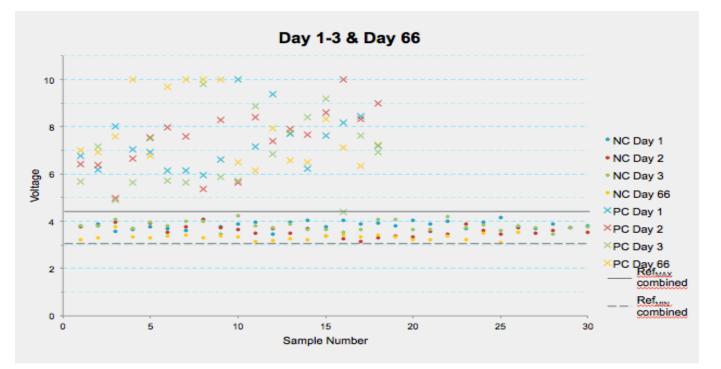
Case Studies:

- HVLD^{mc} with Albumin Solution (1,2,3 and 66 days)
- HVLD^{mc} vs. Vacuum Decay with Albumin Solution
- Realistic Defects


pda.org

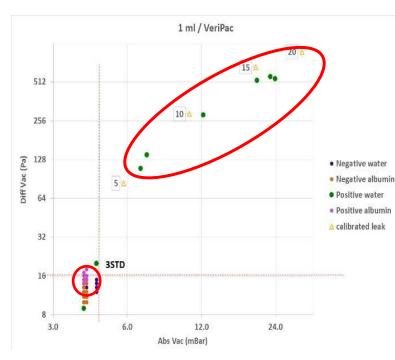
Case Study 1: HVLD with Albumin Solution (1,2,3 and 66 days)


- ✓ 2R (4ml capacity) glass vials
- ✓ 13mm Teflon faced stopper, Flip Off Seal 13 mm
- ✓ Positive Controls: 5, 10 und 15 µm laser drilled holes, neck and bottom
- \checkmark 3 positive control samples of each hole size and position
- ✓ 4 rounds of testing; 3 consecutive days, and one round 66 days later in different locations (NY-CH).
- ✓ Fill volume was 3ml 20% Albumin solution for both PC and NC groups. Vials were filled prior to testing, stoppered and crimped.

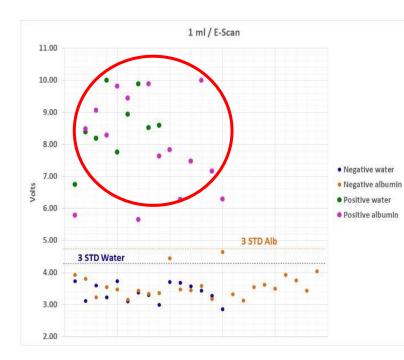

Case Study 1: HVLD^{MC} with Albumin Solution (1,2,3 and 66 days)

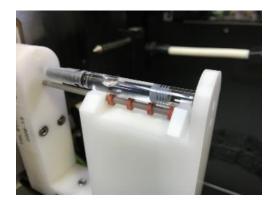
Case Study 1: HVLD^{MC} with Albumin Solution (1,2,3 and 66 days)

Case Study 2: Vacuum vs. HVLDmc for PFS

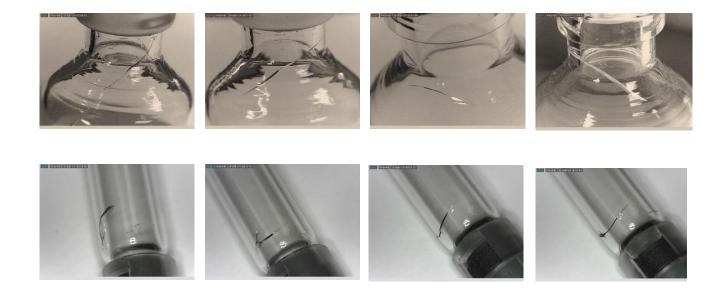

- ✓ 1mL and 2.25 mL Syringe (Water and Albumin)
- ✓ Positive Controls: 5, 10 und 20 µm laser drilled holes, barrel and shoulder.
- ✓ 3 positive controls with water for each size
- ✓ 5 positive controls with Albumin for each size
- ✓ Albumin concentration of 17.5%
- ✓ Two test methods: Vacuum Decay and HVLD^{mc}

Vacuum Decay




- Vacuum Decay @ <5.0mbar
- Albumin & Water Samples
- Laser Drilled Defects 5, 10, and 20µm.

HVLD^{mc}


Conclusion

HVLD shows a clear advantage in detecting defects in parenteral packaging containing large molecule products.

Realistic Defects

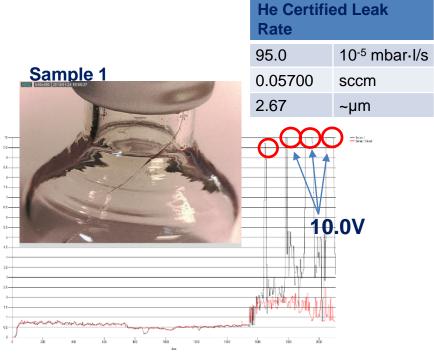
Naturally Occurring Defects

Sample	leak rate			Visual	Size
	mbar·l/s	10 ⁻⁵ mbar·l/sec	sccm		um
1	0.00095	95	0.05700	Large crack	2.67
2	0.0000021	0.21	0.00013	Medium crack	0.13
3	0.000014	1.4	0.00084	Medium crack	0.32
4	0	0	0.00000	Small Scratch	0.00
6	0.00067	67		Large crack	2.24
7	0.015	1500	0.90000	Large crack	10.61
9	0.00000029	0.029	0.00002	Small crack	0.05
10	0.00029	29.0		Large crack	1.47
11	0.074	7400	4.44000	Large crack	23.56
12	0.055	5500	3.30000	Large crack	20.31
16	0.0014	140	0.08400	Small crack	3.24
18	0	0	0.00000	Small Scratch	0.00
19	0	0	0.00000	Scratch	0.00
20	0.016	1600	0.96000	Large crack	10.95

Sample 3

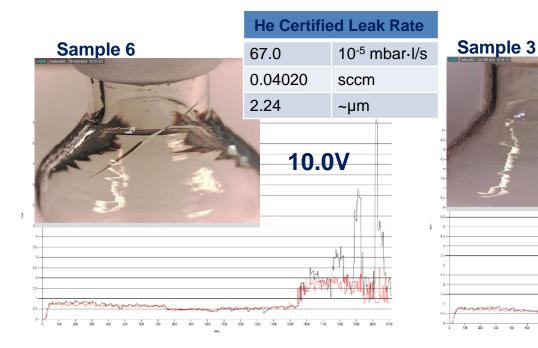
Sample 6

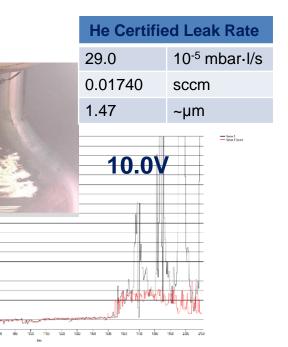
Sample 16



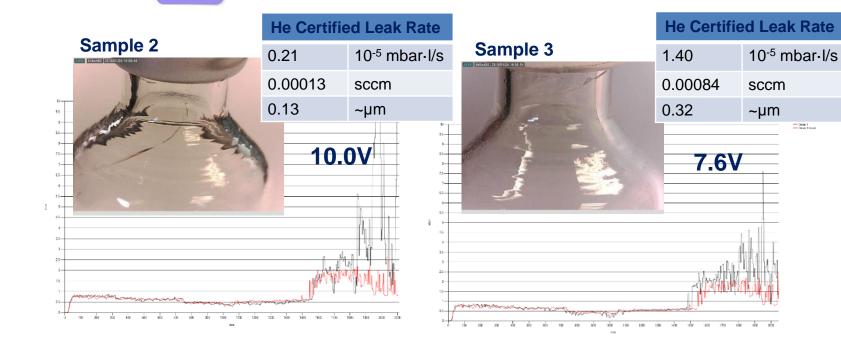
Defect Detection

- * Controlled crack produced.
- Certified flow measurement with Helium mass spec.
- Peak signal response is recorded.
- Voltage signal response with each rotation.





Traditional Target Leak Sizes



He Leak Rates

CONNECTING PEOPLE SCIENCE AND REGULATION®

Summary

- Vacuum decay is a sensitive and reliable test method for gas applications
- Reliability and capability of Vacuum decay is adversely affected by large molecule products such as Albumin, producing a low to zero detection capability for protein base solutions
- MicroCurrent High Voltage Leak Detection (HVLD^{mc}) is capable of detecting micro cracks down to the MALL, including for low conductivity liquids
- HVLD^{mc} is not time critical (time zero vs. day 66).
- MicroCurrent HVLD^{mc} generally effective for wide range of product conductivities.
- Naturally occurring defects below the 1µm level can be readily detected using HVLD^{mc}
- Nonvisible cracks below the crimping are detectable

For additional information, please contact me: a.chabchoub@pti-ccit.com CH +41 21 805 00 20 USA +1 914 337 2005 Or visit our site: https://www.pti-ccit.com/

pda.org

