
Test Methods for Prefilled Syringes 19&20 October 2023, Gothenburg, Sweden

Horst Koller, CEO, HK Packaging Consulting GmbH Erik Berndt, Industry Manager – Medical and Pharmaceutical, ZwickRoell GmbH & Co. KG Introduction to Syringe Systems & Components

Prefilled Syringes

Syringe Market Overview - General

COC: Cyclic Olefin Copolymer **COP:** Cyclic Olefin Polymer

Definition of Prefilled Syringes

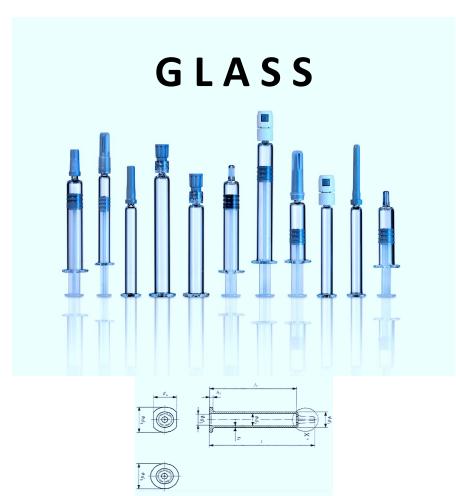
When we are talking about syringes, we are talking about Prefilled Syringes!

Bulk Syringes

Prefilled Syringes

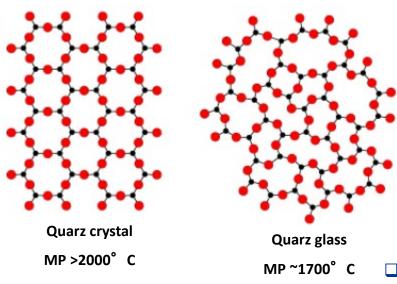
Bulk syringes unsterile and were delivered packed in Rondo trays.

Pre-Sterilized syringes are delivered in tub and nest and are ready for filling at customers.

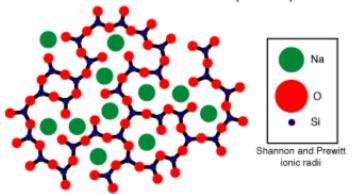


Materials for Syringe Systems

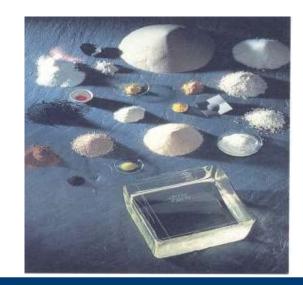
Glass Formats up to 20ml,


Syringe Size	OD [mm]	OD ± [mm]	ID [mm]	ID ± [mm]
0.5 ml	6.85	0.10	4.65	0.10
1ml lg	8.15	0.10	6.35	0.10
1 – 3 ml	10.85	0.10	8.65	0.20
5 ml	14.45	0.10	11.85	0.20
10 ml	17.05	0.20	14.25	0.20
20 ml	22.05	0.20	19.05	0.20

ISO 11040-4 specified Outer & Inner Diameter Dimensions

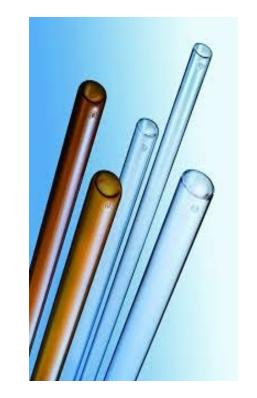


Outer Diameter: 1ml std 9,2 ± 0.1mm


Materials for Syringe Systems: Glass

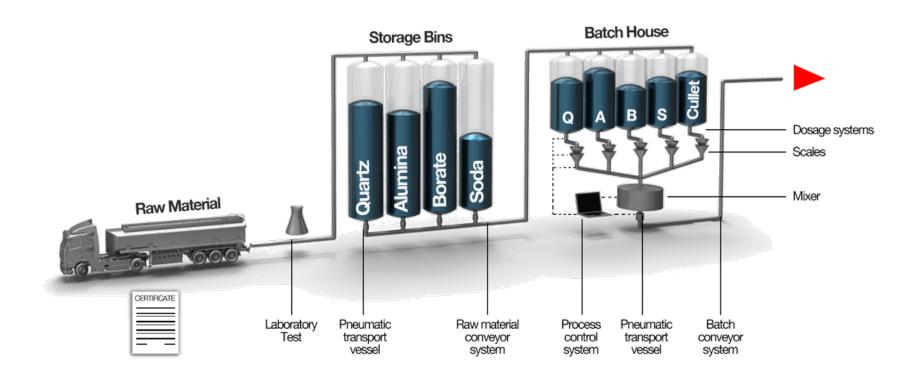
Proposed Structure of Sodium Silicate Glass after Warren and Biscoe (1930's)

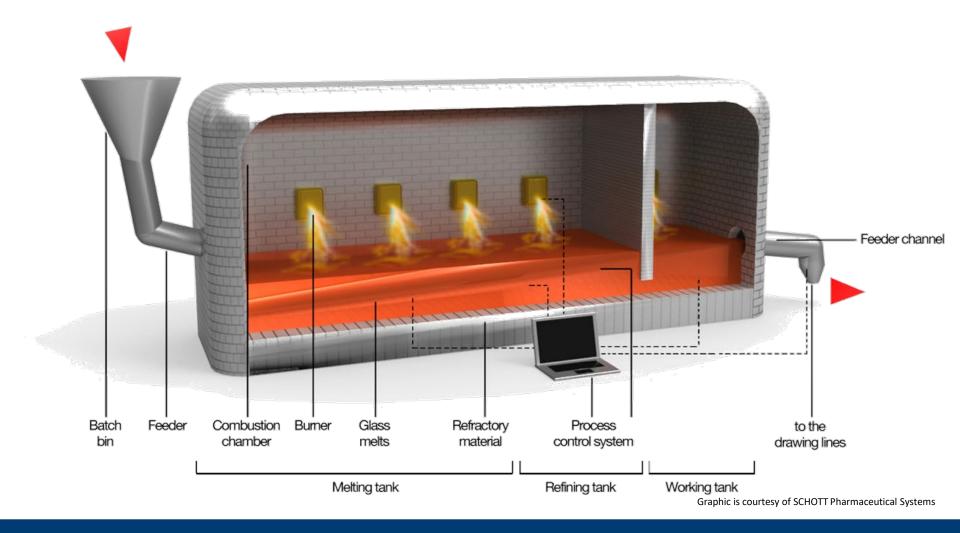
- Mixture of crystalline oxides, carbonates, etc.
- Glass is a "frozen super cooled liquid"
- Glass is an inorganic melt, cooled down and solidified without crystallization.
- Considered solid below ~500°C, without defined melting point because of its amorphous structure.
- Composed of:
 - Network former : SiO₂ (SiO₄⁴⁻)
 - Network modifiers to lower melting point Na₂O, B₂O₃, PbO
 - Stabilizers to improve durability CaO, Al₂O₃
 - Colorants as needed Fe₂O₃ TiO₂ & many others

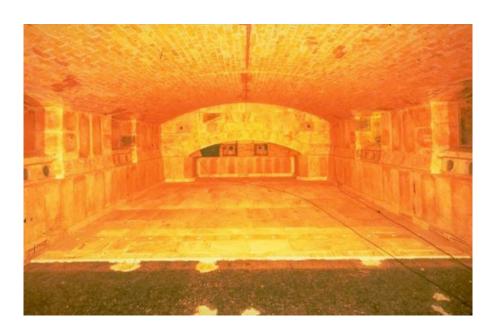


Materials for Syringe Systems: Glass

CORNING

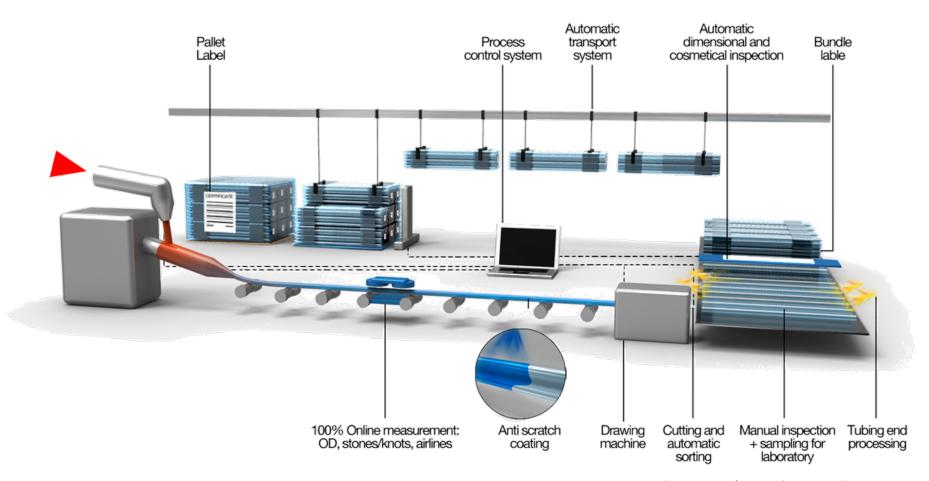






Non limitative list

Logos taken from companies webpages



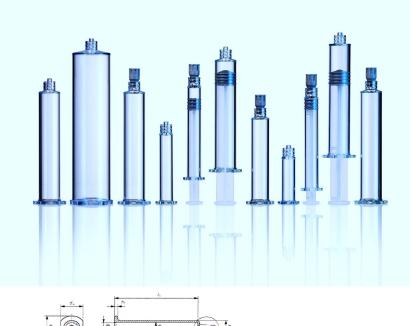
Melting tank

Danner Mandrel

Graphic is courtesy of SCHOTT Pharmaceutical Systems

Graphic is courtesy of SCHOTT Pharmaceutical Systems

Key Player Glass Syringes

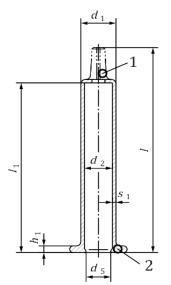

Non limitative list

Logos taken from companies webpages

Materials for Syringe Systems

Polymer Formats up to 100ml

POLYMER

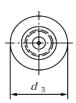


Syringe Size	OD [mm]	OD ± [mm]	ID [mm]	ID ± [mm]
0.5 ml	6.8 – 8.2 6-8 – 9.4*	0.10	4.6 – 4,8	0.10
1ml lg	8.1 – 9.4	0.10	6.3 – 6,5	0.10
1 – 3 ml	10.8 - 11.4	0.10	8.5 – 8,75	0.10
5 ml	14.4 - 15.0	0.10	11.7 –12.2	0.10
10 ml	16.6 - 18.0	0.10	14.1 –14.7	0.10
20 ml	21.2 - 22.7	0.15	18,9 –19.1	0.15
50 ml	29.2 – 32.3	0.2	26.4 – 29.3	0.2
100 ml	35.2 – 35.5	0.2	31.8 – 32.2	0.2

ISO 11040-6 specified Outer & Inner Diameter Dimensions in Ranges

Materials for Syringe Systems

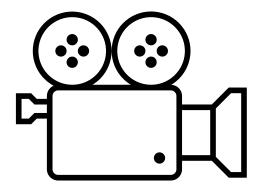
Dimensions in millimetres



Nominal volume		Nominal dimension tolerances					
ml	d_1	d_2 a	1	l_1	h ₁	d3	d ₄
0,5	6,8 to 8,2 ± 0,1 6,8 to 9,7 ± 0,1 ^b	4,6 to 4,8 ± 0,1	57,0 to 64,8 ± 0,2	47,5 to 54,1 ± 0,2	1,8 to 2,1 ± 0,1	13,4 to 13,8 ± 0,1	10,5 to 11,0 ± 0,1
1¢	8,1 to 9,7 ± 0,1	6,3 to 6,5 ± 0,1	64,0 to 64,5 ± 0,2	54,0 to 54,5 ± 0,2	1,9 to 2,3 ± 0,1	13,7 to 13,8 ± 0,1	10,5 to 11,0 ± 0,1
1 ^d	10,8 to 11,4 ± 0,1	8,5 to 8,75 ± 0,1	45,9 to 46,9 ± 0,2	35,2 to 35,9 ± 0,2	1,9 to 2,3 ± 0,1	17,75 ± 0,1	14,70 ± 0,1
2,25	10,8 to 11,4 ± 0,1	8,5 to 8,75 ± 0,1	64,4 to 66,8 ± 0,2	53,9 to 54,6 ± 0,2	1,9 to 2,3 ± 0,1	17,75 ± 0,1	14,70 ± 0,1
3	10,8 to 11,6 ± 0,1	8,5 to 8,75 ± 0,1	82,4 to 84,6 ± 0,2	71,7 to 72,4 ± 0,2	1,9 to 2,3 ± 0,1	17,75 ± 0,1	14,70 ± 0,1
5	14,4 to 15,0 ± 0,1	11,7 to 12,2 ± 0,1	76,5 to 80,0 ± 0,2	64,3 to 66,7 ± 0,2	2,0 to 3,1 ± 0,15	22,9 to 23,1 ± 0,1	19,40 to 19,9 ± 0,1
10	16,6 to 18,0 ± 0,1	14,1 to 14,7 ± 0,1	97,7 to 100,5 ± 0,3	86,2 to 87,3 ± 0,2	2,0 to 3,1 ± 0,15	26,9 to 27,4 ± 0,1	21,50 to 21,9 ± 0,1
20	21,2 to 22,7 ± 0,15	18,2 to 19,1 ± 0,15	107,3 to 120,2±0,3	95,6 to 109,1 ± 0,2	2,0 to 3,1 ± 0,15	32,25 to 39,0 ± 0,15	25,15 to 26,1± 0,15
50	29,2 to 32,3 ± 0,2	26,4 to 29,3 ± 0,2	128,8 to 151,2 ^e ± 0,5	118,7 to 128,2e ± 0,5	2,0 to 3,5 ± 0,2	45,00 to 50,1 ± 0,2	33,2 to 39,10 ± 0,2
100	35,2 to 35,5 ± 0,2	31,8 to 32,2 ± 0,2	169,8 ± 0,5	156,4 ± 0,5	2,7 to 3,1 ± 0,2	47,65 ± 0,2	41,45 ± 0,2

- For the specification of the inner diameter, the specification of the plunger shall be considered with regard to break loose force and sustaining force as well as for plunger/barrel seal tightness. The size of the inner diameter also depends on the polymer material.
- This range is dedicated to barrels with an integrated Luer lock.
- c Long.
- d Short or standard.
- e This range is required in order to consider particular applications, such as pumps and injectors.

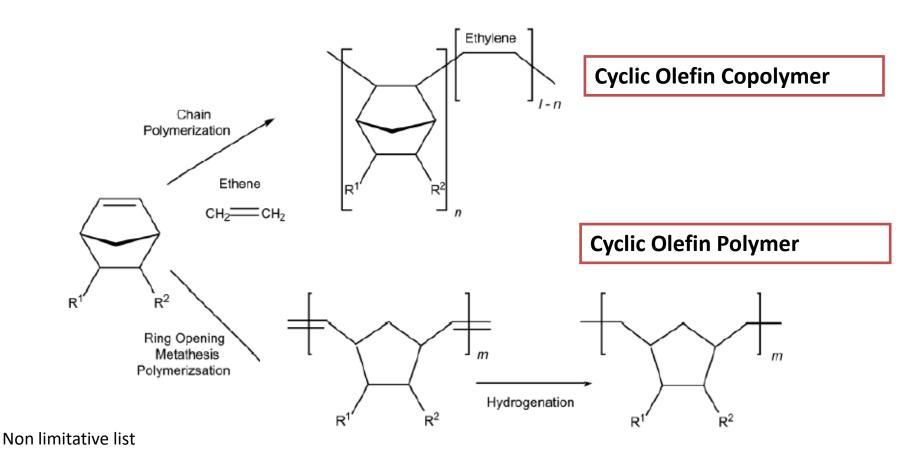
a) cut-flange


b)round flange

c) small-round flange

Extract from ISO 11040-6 Plastic barrel dimensions

From Tubing To Syringe


Cyclic Olefin Copolymer (COC) and Cyclic Olefin Polymer (COP)

- Amorphous polymer
- Relatively new class of polymers
- Wide variety of applications in films, lenses, medical devices
- No commodities (price)

Logos taken from companies webpages
Pic is courtesy of SCHOTT Pharmaceutical Systems

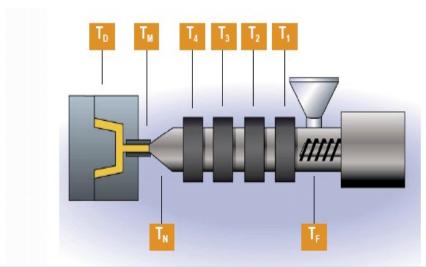
Cyclo Olefine Copolymer (COC) and Cyclo Olefine Polymer (COP) are closely related

Stabilizer: Irganox 1010

Pentaerythritol Tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate)

Colorant: Ultramarine Blue

Slip additives: Oleamide, Erucamide



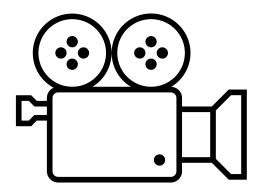
Company	Name	Туре
Japan Synthetic Rubber	Arton ™	COC
Mitsui Chemicals	APEL™	COC
Topas Advanced Polymers	Topas [®]	COC
Zeon Corp	Zeonex	COP

Non limitative list

Logos taken from companies webpages

Manufacturing Process: Injection Molding

Processing temperature	T _F =< 100 °C T ₁ =230-260 °C	
	T ₂ =240-270 °C	В
	T ₃ =250-280 °C T ₄ =260-290 °C	S
	T _N =240-300 °C	In
	T _M =240-300 °C	N
Mold-temperature:	$T_D = 95 - 130 ^{\circ}\text{C}$	N
Max. residence time	$<$ 15 min; short interruption to cycle: reduce $T_x \! = 170 ^{\circ} \! \text{C}$!	
Injection pressure:	P _{sp} = 500 - 1100 bar (specific)	
Hold on pressure:	P _N = 300 - 600 bar (specific)	



Back pressure:	P _{st} = 150 bar max. (specific)
Screw speed:	$n_s = 50 - 200 \text{ rpm}$
Injection speed:	moderate to fast (50 mm/sec - 150 mm/sec)
Nozzle type:	free - flow
Note: - out to the transfer	PC 1 41 1 T 1 1 1 1 1

Note:

- Shrinkage is dependent on processing conditions and part design. Typical shrinkage values are 0.4 - 0.7%
- · Topas Advanced Polymers recommends only external heated hot runner systems.
- For molded parts with especially high requirements to the surface quality we recommend to choose the highest possible mold temperature.

Manufacturing Process: Injection Molding

Non limitative list

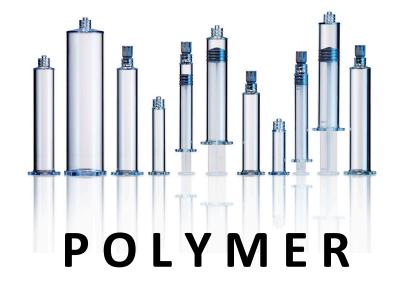
Key Players Polymer Syringes

Prefillable Polymer Syringe Offerings

Company	Resin	Brand
Becton Dickinson	COP	BD Sterifill™ SCF™
Gerresheimer Taisei Kako	COP	ClearJect™
Schott Pharma	COC	SCHOTT TopPac®
SiO ₂ Medical Products	COP	Barrier Coated Systems
Terumo	COP	Plajex™
West (Daikyo)	COP	CZ® RU system
Wirthwein Medical	COC	WIM-Ject™

Key Players Polymer Syringes

Non limitative list


Logos taken from companies webpages

What Material is the BETTER Choice?

GLASS

VS.

Advantages and Disadvantages of Materials

Polymer	VS.	Glass
---------	-----	-------

Feature	Polymer	Glass
Absence of Heavy Metal		
Breakage Resistance		
Design Space / customizing		
Discoloration by radiation	Q C	
Haze Formation		

Advantages and Disadvantages of Materials

Polymer	VS.	Glass
---------	-----	-------

Feature	Polymer	Glass
Integrated Luer Lock		
Low E & L Profile		
"long term" experience		
Multiple Supply Source		
Permeability (gases)		

Advantages and Disadvantages of Materials

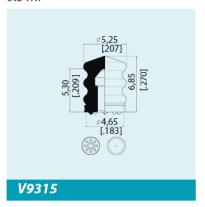
Polymer	Vs.	Glass
---------	-----	-------

Feature	Polymer	Glass
Sterilization Possibilities		
Siliconization (free silicone)		
Temperature Resistance		
Tolerances		
Tungsten Free		

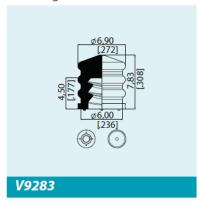
Sterilization Methods

Sterilization	Polymer	Glass
Autoclaving	possible	
Irradiation (Gamma, X-Ray, E-beam)		
Heat Tunnel		
Gases (VHP, NO2, ETO)	possible	4

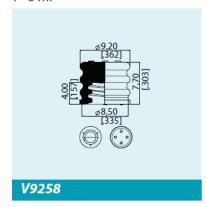
Rubber Components for PFS

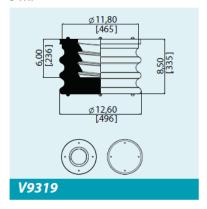

Major Suppliers for PFS Rubber Components

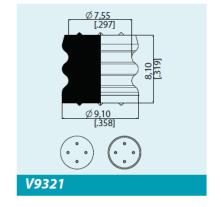
- Aptar Stelmi: http://www.aptar.com/pharma/injectables/
- Datwyler: http://sealing.datwyler.com/de/industry-solutions/health-care.html
- West: http://www.westpharma.com/en/Pages/Default.aspx
- Lonstroff: https://www.lonstroff.com/en

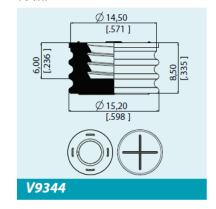

Rubber Components for PFS

TYPICAL PRODUCTS

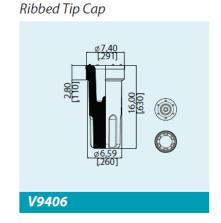

0.5 ml

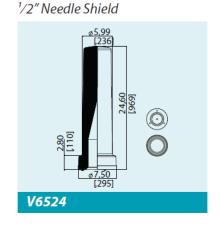

1 ml long


1 - 3 ml


5 ml

Dual chamber plunger


10 ml

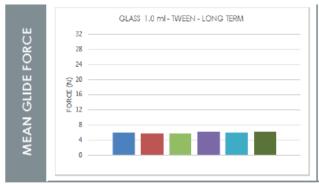


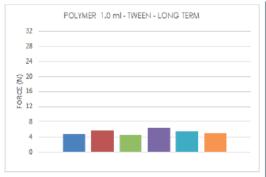
Drawings taken from Datwylers product brochures

Rubber Components for PFS

V9257

Drawings taken from Datwylers product brochures


Pic is courtesy of SCHOTT Pharmaceutical Systems


Alternative to Standard Rubber

	CHARACTERISTICS
MATERIAL	THERMOPLASTIC ELASTOMER - EVOPRENE G970
BIOCOMPATIBILITY	ISO 11040-5, ISO 10993-5, 1999, USP 27, NF 22, 2004 - CLASS VI70℃
STERILIZATION	GAMMA IRRADIATION, STEAM (relaxed), NONE - by customer choice
BREAK LOOSE & GLIDE FORCES	ISO 11040-8 Annex E
CONTAINER CLOSURE	ASTM F1929
PERMEABILITY	ICH Q1A(R2)
EXTRACTABLES	DS/EN ISO 8871-1:2005

INJECTO A/S · PHARMACEUTICAL PACKAGING · STRANDVEJEN 60, 5. · DK-2900 HELLERUP · ORG. NO.: 3580 6555 HTTP://INJECTO.EU · P: +45 2785 1000 · M: INFO@INJECTO.EU · COPYRIGHT © INJECTO A/S · ALL RIGHTS RESERVED