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AVl is a fast evolving technology
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Key Take Away:
AVl is a young,
maturing
technology

Many changes
over the last 30

years, next one
is deep learning
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1 particle image Image with grey levels...Digital Image = matrix grid
of figuresin Xand Y

Key Take Away: .

* Computer vision see only a matrix In computer vision language
 That represent spatial distribution of grey levels (python/C++) itis a matrix object:

. . ol e . np.zeros(img.shape,
Neural Network will work with image matrix dtype=img.dtype)
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Machine Learning versus Deep Learning ?
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Machine Learning

Can work with strong image signals (Faces / Road Sign)
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Key Take Away: Machine Learning (SVM) never achieved promising results with parenteral
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ppa Automated Visual Inspection Deep Learning Case Study
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N problem statement - Challenges

We believe that @
Deep Learning N
will significantly
improve Trust
and Performance
of Automated

Suboptimal detection
rates for some
probabilistic defects

visual inspection

Tedious process around

the improvement and test
of machine performance

@

Manual reprocessing of
false reject units after
automated visual
inspection takes a long
time
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N _ _
What are Benefits of Deep Learning?

« Deep Learning can significantly improve defect
detection on AVI, specifically for defects that are
probabilistic

« Deep Learning can be more specific to defect
detection and can minimize false rejects

* Deep Learning can allow more generalization of
setup across manufacturing network, this brings
simplification and harmonization of practices.
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S
Regulatory Landscape for A.l.

« UNESCO, 2022, Recommendation on the ethics of artificial
intelligence, United Nations Educational, Scientific and
Cultural Organization (UNESCO)

- FDA FRAME initiative too - https://www.fda.gov/about-
fda/center-drug-evaluation-and-research-cder/cders-
framework-regulatory-advanced-manufacturing-evaluation-
frame-initiative

« USP<1790>, May 2022, Visual Inspection of Parenteral

« FDA, CDER, Draft May 2023 - Artificial Intelligence in Drug
Manufacturing

« EMA, Draft July 2023 - Reflection paper on use of Artificial
Intelligence

CONNECTING

ap
REGULATION®



} ppa Automated Visual Inspection Deep Learning Case Study 8

Sz Scope of Change with Deep Learning = image processing

Unit Mechanical

H : Automated Visual
andling

Inspection Machine

Unit Presentation to
Camera

Unit lllumination

Image Acquisition

Image
Acquisition

Image MEELL . Image Processin Image
Labelling training 9 9 Libraries

Tech infrastructure -
Result archiving

Unit Disposal
Control Strategy
CONNECTING
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Convolutional Neural Network for image Classification
) Early layers to detect big .
First | t Last layers for final defect
inl};sut Z‘ﬁiﬁ ° features classification Conform
pixel grey class
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Many Layers designed to optimize image classification,

CONNECTING containing from 3 to 50 million parameters to adjust
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Deep Learning is Supervised Learning with Human in the Loop

Labelling Training

Al Model after

Machine training and
Learning qualification is
Model versioned and
Iockfed vxithout

£ . any further

Qualification improvement

during routine

production.

If improvement
New Frozen Defect is required the
Images to Trained model goes back
inspect Model to development
and
requalification.

Image Labelled
Library Images

Detection

Inference in routine production
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= System Risk Assessment — Deep understanding of process flow is required

Vision setup for image acquisition, pre-processing, DL model, Post processing

2255

* Pre-processing many intermediate

images (centering — AOI — filtering
' — data reduction) = traditional
computer vision
| ~ * Processing by Deep Learning »
*

model to classify defects

e Archive classification results in

AVI machine takes aregister for each frame
i.e. 24 frames number

during vial rotation

For each of 24 Frames:

Pass / Fail in
shift register
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X image sets with principle of independence — no leakage

Original image data sets

Test set

Validation set

Test set

Training Tuning
with ',
labelled evaluation
images

Final Performance
control

v
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N How to use fully independent test sets in AVI ? Why Data Augmentation ?

1 physical defect set for training and validation during
training: true defect zone + wide polymorphism

Validation set

Training set

Augmented Training set

Tuning,
evaluation

Training

with Final Performance
labelled control

images

P%EPT[JE Frozen Predictive CNN Model pda.org
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N Why On Edge infr?structure versus Cloud?

O company Cloud | Supplier Cloud
(Active Directory) Not used

Image Server Webserver | apelling tool + On Edge = faster flow of massive image storage
data base to stay behind firewalls cybersecurity rules
- On Edge Lo + On edge = we buy softwares from supplier to
- | Dev. Op. ® b\.jg avoid servicing on cloud (no 3rd party mngt)

Pipeline Training software + On edge = we can use GMP infrastructure for
U ° data integrity and access control

- On Edge infrastructure is more validation effort

- ﬁ n
(PEEJ]EPT[E l I. and cost

av =
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On Edge infrastructure — how to validate this ?

Firewall

J| ) URS for image Validation
Webserver and metadata deployment

Labelling tool

Image Server
data base

Production

System Risk
assessment

— e 0
S . on Edge .Es%fx. URS for image
i Dev. Op. AN storage and
5 . . et
I % »:-—‘ A b, Plpellne Training software retention app
avi — P
o URS for image
I;Ii labelling / Ie'l\:]eg‘é\'cogge

definition

servers
deployment

training and
digital twin app

Digital Twin
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Validation Strategy for Deep Learning Models in AVI

S

Desktop Qualification
of Models

*Desktop OQ evaluation of

7

» T )

Life cycle Continuous
improvement

*Data gathering for

o

On-line performance
evaluation

*Digital Image testing OQ to

DL model on edge digital
twin
*Strong metrics
documentation in OQ

test AVI hardware

*Real defect kit testing PQ to

compare to MVI baseline

*Production Lots first control

strategy (AQL/trends)

improvement

*Continuous improvement
with change control and

new validation of
performance
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=g Why visualization of defect activation is key?

Model

- Heatmap is a powerful tool
put I S — o to bring explainability to the
model behavior

Opening the
Black Box

- This can show Iif the model

IS activating detection in the

shoulder choulder i corresponding defect region
activated by
the model

(red)
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N proposal for Model Desktop Operational Qualification

Input Process

o List image used in training / val. / test sets,
balance sets

o Describe model type / structure / Layer
modifs

o Describe the Deep Learning type (classif. /
segm...)

o Describe training type (scratch / transfer )

o Describe Al platform
(tensorflow/keras/torch)

o Describe optimization function used

o Describe training parameters (rate, batch
size)

o Describe hardware used for training

o Describe labelling software used

o Describe who has done the labelling

o Describe data augmentation or use of GAN
and control of lightning

o Describe input image pre-processing size
ind interpolation used

Output

; o:_g( ®
K .6\04?

DL Model training

Document Learning curve with Loss /
errors

Document KPIs (Acc. Precision Recall)
Document the number of epoch to best fit
Document the heatmap visualization on
test set images

For multiclass models document by class
Document confusion matrix on test set
images

Document the name + version of the new
trained network

Document image sequence performance
test set

Evaluate performance with image from a
new test kit never used (totally independent
test sets)

Evaluate False rejects on larger sample
sets never shown to the model
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The Model Domain of application must be controlled
Al models can be developped, trained and validated If same model is used in another domain of application,
for a specific use case and defect class. the performance must be verified.

Model Domain of application Same Model with different Domain of application

Product / presentation Product / presentation

Training set

Training set
Validation set Validation set

Test set Test set

Defect Classes
Defect Classes
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€ Learning Loop 1o speea up contiuous improvement witn real derects

O O

Sample some unlabeled O O

images from production

I

Continuous improvement
wheel for Model optimization
with a good balance PQS:
change control + annual
reportable changes
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= Competencies to develop in Visual Inspection teams

5

//

Data
science

Data

Tech/ . :
Engineering

Industrial
Automation ’
Computer
Vision /
Optics
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Computer
Validation

Mechanical
engineering

* Labelling role

Create the Job description
Develop tools & training
Upskill some technicians
in a central function team

* Data engineer visual inspection role
Create the Job description

Develop tools & training

+ external certification

Upskill / hire some engineers

in production site / visual inspection team

pda.org:
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Conclusion

Deep Learning will

»  Deep Learning will require new competencies to hire & train like

lr.npr.o.ve labelling and data engineering.
significantly
Performance »  The effort for backend infrastructure should not be
. . underestimated in context of GMP, cybersecurity and data
Generalization and integrity rules.

Trust of Visual
Inspection process.

»  Regulatory risk versus traditional methods, need for ability to
carry out change management in PQS.

« Validation should be based on robust URS, QRM, deep process
knowledge and transparency to bring explainability of A.l.
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