Challenges from a laboratory perspective

Sticky particles

Problem:

- Prepared particles tend to stick to the container or the closure, especially to siliconized surfaces
- Differences between different particle sources and sizes

Sticking particle in syringe tip

Sticking particle on siliconized glass surface

Sticky particles

Sticky particles

- Solution:
- Desiliconize the containers with an appropriate solvent
 - Behaviour must be checked to see if the product behaves differently in a container without silicon layer
- Usage of particles with a specific form factor to reduce the risk
 - Need of quite some data to confirm which particles sources and form factors have the highest chance of not sticking
- Closing of the canula to prevent particles from getting lost

Molded and tubular glass defects

Molded and tubular glass defects

- Problem:
 - Preparation methods differ when creating glass defects in molded and tubular glass containers
 - Molded glass has a much more unpredictable behaviour due to the structural composition of the container
 - When setting up SOPs for the preparation of glass defects it is not possible to adopt procedures without testing them
 - Inspection of molded glass containers more difficult because of the uneven thickness of the glass
 - Molded containers oftentimes already have inclusions or airlines

Molded and tubular glass defects

- Practical tips:
 - Procedures for the preparation of glass defects have to be tested for each container family
 - New procedures have to be developed if the trusted methods won't work for a new container format
 - Especially larger volume molded containers will behave unpredictably
 - Usage of particles with a higher contrast or larger particles due to enhanced PoD

BFS-containers

- Problem:
 - Transparency and thickness
 - Transfer of particles inside the container
 - Fragility of the container format
 - Particles tend to stick to the polymere of the container

BFS-containers

- Solution
 - Particles with high contrast to enhance visibility and detection rate
 - Particles having a larger size limit tend to not stick to the container as much

Highly viscous products

Problems:

- A highly viscous solution makes it difficult for the particles to get into solution
- Particles, once inserted, are behaving nearly static
- Air bubbles take a long time to rise and dissolve
- Filling of solution harder
- If a placebo solution is used a thickener should be used that combines long term stability and similiar appearence to the original product

Highly viscous products

Practical tips:

- The behaviour of different particle sources in a highly viscous product should be tested beforehand
- Feret max is not the only interesting parameter in this case, form factor and weight of the particle
- Using the sidewall to paste the particle in the container makes the final inspection much easier

Toxic products

Problem:

- Preparation of a toxic original product must follow strict rules and needs specially trained preparators
- Most external and internal laboratories are not equipped for the task
 - -> the use of a placebo solution is nearly always the right decision

Foaming products

- Problem:
- During particle preparation smaller particle sizes tend to float on the foam
 - -> risk of particles sticking to the stopper
- Foaming of a product also makes the inspection of the containers after preparation harder, especially in highly viscous solutions
 - -> Prepared samples need to stay still for a while to ensure that the foam dissolves

Air bubbles in product

- Problem:
 - Air bubbles make it difficult to find certain kinds of particles inside a solution (e.g. glass particles)
 - Air bubbles remain stable in highly viscous solutions for a long time -> some cooldown time is required before the final inspection – Air bubbles are easily confused with e.g. glass particles
 - -> operators need special training to differentiate

pda.org