Best Practices for Glass Primary Containers

Incoming Inspection

Overview incoming inspection

- 1 Requirements for incoming inspection
- 2 How to set up in practice
- 3 What to consider or to avoid examples
- 4 Coordination process between packaging manufacturer & customer

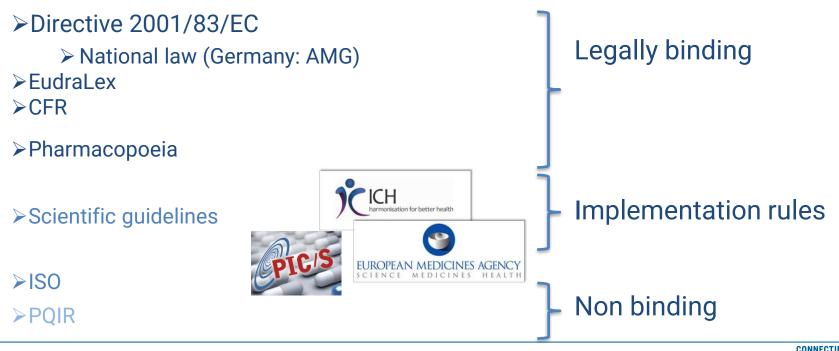
Requirements for Incoming Inspection

pda.org

What is the use of packaging? general remarks

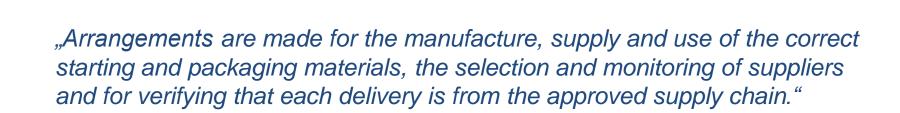
- Packaging is an integral part of a pharmaceutical product
- It affects quality, stability and identification of drug product
- Provides an adequate degree of protection (air, humidity, light)
- Should not interact physically or chemically with drug product
- No risk of toxicity

Challenges in being up to date


- Quality requirements for primary glass container for drug product filling are continously increasing
- Fast running filling lines require smooth supply of packaging components
- Supply of material from different suppliers may result in certain variations within agreed tolerances, which may require re-adjustments of filling lines
- Special requirements for
 - Pen Systems or Auto Injectors
 - $\circ~$ New products (biologicals) or
 - special applications (ophtalmica)

COPYRIGHT © PDA

Legal Basis & regulatory Framework



pda.org

EU GMP Guideline, Part I, Chapter 1 Pharmaceutical Quality System

Code of Federal Regulations 21 CFR 211 Sec. 211.80 General requirements

- \rightarrow have appropriately detailed written procedures for any handling of components
- → Ensure traceability. Have a unique code identifyier for each lot in each shipment received and use it in your recordings of the disposition. Have the batch status assigned and identifyiable (i.e., quarantined, approved, or rejected).

CFR 211.84 Testing and approval or rejection of components, drug product containers, and closures

D (1) At least one test shall be conducted to verify the identity of each component of a drug product. Specific identity tests, if they exist, shall be used.

D (3) Containers and closures shall be tested for conformity with all appropriate written specifications.

- EU GMP Guideline Part 2,
- 7.3 Sampling and Testing of Incoming Production Materials

7.31 Full analyses should be conducted on at least three batches before reducing inhouse testing. However, as a minimum, a full analysis should be performed at appropriate intervals and compared with the Certificates of Analysis. Reliability of Certificates of Analysis should be checked at regular intervals.

Sampling, Defects and Acceptance Levels EudraLex-Volume 4 -Good Manufacturing Practice (GMP) guidelines

Annex 8, SAMPLING OF STARTING AND PACKAGING MATERIALS

- test on representative samples
- > have a **sampling plan** with <u>statistically determined</u> number of samples

In Practice

- Control Sample Unit (Tailgate samples) is important for evaluation of a batch
- Sampling often delegated to supplier
- The number of samples for incoming inspection depends on batch size and defined AQL

pda.org

Sampling

Sampling for Incoming Inspection 21CFR820.250 – Statistical Techniques

(a) Where appropriate, each manufacturer shall establish and maintain procedures for identifying valid statistical techniques required for establishing, controlling, and verifying the acceptability of process capability and product characteristics.

(b) Sampling plans, when used, shall be written and based on a valid statistical rationale. Each manufacturer shall establish and maintain procedures to ensure that sampling methods are adequate for their intended use and to ensure that when changes occur the sampling plans are reviewed. These activities shall be documented."

Requirements for Inspection:

Requirements for Inspection- Acceptance criteria

ACCEPTANCE CRITERIA

... based on the intended use of the glass container

- Dosage form?
- Which markets? EU –US –JP -other
- Kind of application? Oral, Parenteral, Inhalation
- Legal regulations & laws?

• AMG, Ph.Eur., USP, JP, CHP, cGMP

Regulatory Expectations → Dossier requirements

CONNECTING PFOPIF

REGULATION

Requirements for Inspection - Testparameters

	Test parameters					
669	Physical / chemical	Pharmacopoeia Regulations Standards	•	•	Requirements from phar and defect evaluation list can be used in general	
00	Microbiological	Pharmacopoeia Internal conditions			our so dood in g	
	Dimensional	Technical drawings Engineering standards (i.e. ISOs) Product & process requirements	•			Specific requirements may nee individually and mutually agreed supplier
	Visual Inspection by attributes	Product & process requirements PDA Technical Report 43 Defect Evaluation List	•	,		 Supplier data complement or m incoming test parameter (risk-b
		 know your product know your process				

know what you get and what you need

Chemical Testing

EP 3.2.1 Glass containers for pharmaceutical use USP/NF Section <660> Type I Highly Resistant Borosilicate Glass

Hydrolytic resistance

- Glass grain
- Surface glass test
- Arsenic release (containers for aqueous parenteral preparations only)
- Fill volume
- Spectral transmission (amber only)

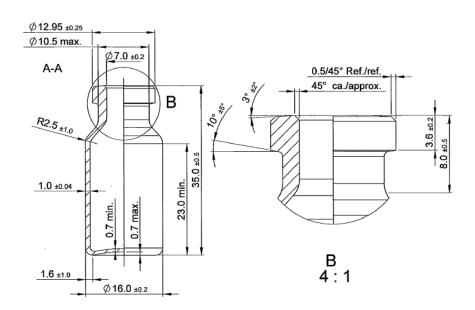
Q0 O

Microbiological Testing

- Bacterial Endotoxin Test (BET)
 - LAL-Test
 - according to Ph. Eur. 2.6.14 ; USP <85> , JP

https://static.nationalgeographic.de/files/styles/ima ge_3200/public/pfeilschwanzkrebs-im-labor-13565.jpg?w=1600&h=900

- Microbial Enumeration Test (MET)
 - Bioburden
 - according to Ph. Eur. 2.6.1; USP <71>, JP


https://media.springernature.com/lw685/springerstatic/image/chp%3A10.1007%2F978-3-662-63235-2_3/MediaObjects/73519_3_De_3_Fig9_HTML.png

Dimensional Testing

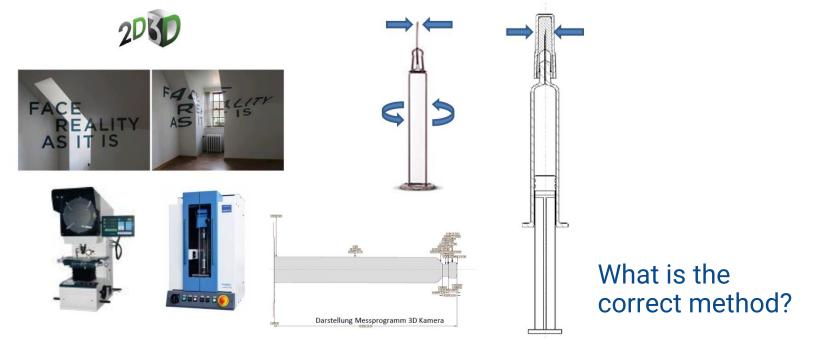
ulul

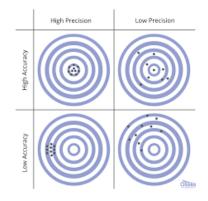
Requirements for Inspection - Testparameters

• Example of an individual defect categorization

Å	Maß- Nr.¤	Technical Drawing	Nomen- clature	Risk prod technical	Classification
	3¤	P	Flange (Collar) Outside Diameter	11 24 28 29	Potential Impact on Container Closure Integrity
	40	•	Flange (Collar) Height	☐ 1¶ ☐ 2A¶ ☐ 2B¶ ☐ 30	Potential Impact on Container Closure Integrity

- Define the risk of individual parameter and acceptance level
- A joint <u>risk assessment</u> of packaging components with manufacturing can also increase the acceptance of incoming inspection activities!


- Test Methods finally derive from established Test Parameter
 - Pharmacopoeia gives both parameter and method
 - Accuracy of the method
 - Tolerance (decimal place) of dimensions in the technical drawing?
- Extent of inspection
 - What needs to be tested for individual batches (inspection level)?
 - Supplier data on Certificate of Analysis
- Test interval
 - full / reduced testing
 - Identity, monitoring or skip lot?



- Dimensional Testing Equipments
 - Gauge
 - Caliper

22

- Micrometer caliper
- Profile projector (manual or electronically)
- Electronic camera measuring system

https://www.ossila.com/pages/accuracy-vs-precision

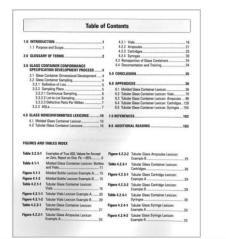
→The method is depending on Parameter & specification
 →The method is depending on internal assessment and need

oda.ord

Visual Inspection - by Attributes

- Special attention should be taken on visual nonconformities to align incoming inspection parameters with the relevant control units of the filling / inspection lines
- Defects are described and classified
- PDA Glass Task Force Technical Report 43
- Edito Cantor Defect Evaluation List

pda.ord



Attribute Classification- Guidance

 Reports provide a general overview of defects including a classification of the potential criticality CRITICAL - MAJOR - MINOR

to support a quality decision-making process

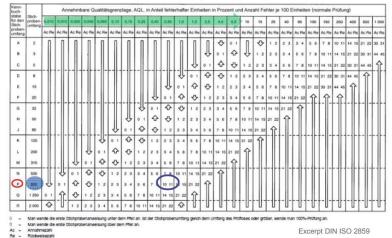
- The characteristics of these defects can vary,
 →the acceptance level should be individually defined
- The sensitivity of camera control units should also be taken into consideration
- Defects may not be equally distributed across the batch manufacturing process (nested)

Glass Nonconformity Lexicon (PDA TR 43)

- CRITICAL A Nonconformity that is <u>likely</u> to result in <u>personal</u> <u>injury</u> or potential hazard to the patient (including defects that compromises the integity of the container
- MAJOR A ... leading to <u>serious impairments</u> e.g. a malfuction that makes the packaging unusable
- MAJOR B Impairments of a lesser degree e.g. <u>reduced efficiency</u> in production
- MINOR Nonconformity that does <u>not impact product quality</u> or process capability
- N/A An imperfection not classified as nonconformity

Sampling, Defects and Acceptance Levels

- Prevailing method for evaluation of defects- Commonly used Acceptance Sampling Plans
- Widely used sample inspection system originally developed as U.S. military standard 105E plans
- The AQL system (Acceptable Quality Limits) has been accepted by national and international quality associations (DIN ISO Norm 2859, ASQ/ANSI)
- Provides acceptance and rejection rates based on normal statistical distribution



AQL System per DIN ISO 2859

- DIN ISO 2859 has different levels for reduced, normal and tightened inspection
- Influencing on the certainty when accepting or rejecting material and the inspection cost
- Code letter defines the number of Tailgate Samples for inspection
- Acceptance / rejection numbers are listed in the AQL columns

			5	Special Insp	ection Leve	General Inspection Levels			
	Losumfang		\$ 1	\$ 2	\$ 3	S 4	1	()	ш
2	Lot	Size	A	A	A	*	A	A	D
9	DIS	15	A	A	A	*	A	D	с
16	bis	25	A	A	D	D	в	с	D
26	bis	50	A	в	в	с	c	D	E
51	bis	90	в	8	с	с	c	E	F
91	bis	150	в	в	с	D	D	F	G
151	bis	280	в	с	D	E	E	G	н
281	bis	500	в	с	D	E	F	н	J
501	bis	1 200	с	с	E	F	G	J	к
1 201	bis	3 200	с	D	E	G	н	к	L
3 201	bis	10 000	с	D	F	G	J	L	м
10 001	bis	35 000	с	D	F	н	ĸ	м	N
35 001	bis	150 000	D	E	G	J	L	N	Р
150 001	bis	500 000	D	E	G	J	м		Q
500 001	und m	ehr	D	E	н	к	N	9	R

Tabelle 2-A - Single Sampling Plan (Normal Inspection)

Translation

- AQL 0.65 Level II
- Acceptance limit 10 Rejection limit 11 defects
- 0.65% AQL Quality Statement:

"If you sample 800 and use the acceptance criteria to accept on 10, reject on 11, you have ~95% probability of accepting the batch if it contains 0.65% defects or less"

Sampling is an important process

• Sampling is mostly delegated to supplier per contract

- Tailgate samples are pulled by the supplier during manufacturing
- Valid conclusions on the whole batch can only be made on representative samples
- Correct sampling is an essential part of the supplier Quality Assurance practice
- Samples are packed separately by the supplier and delivered with the batch shipment
- verification of sampling by supplier audits & dual batch sampling

Requirement for Inspection: System in written and justified

	What	Why	how often?
	Suppliers certificate	is the basis	Every time
	Regulations / Norms	name the requirements (i.e.EP/USP)	at minumum as per ceru cate
	Attributes	Critical to quality (cracks,scratches) Market specific (JP)	max onisk based
	Chemical Analysis	Suitability	Full analysis
\bigcirc	Microbiological	Contamination control (i.e. parenterals)	"appropriate interval" may be risk based
	Dimensions	are based on (DIN)ISO Dossier relevant for container closure	may be risk based
	Functionals	Critical to quality, process, application	may be risk based

Take-Home Message

- Know the regulations-
 - where is a degree of freedom, what is legally binding
- Have a good partnership with your supplier, you need him
 - the better you know him, the processes & control strategy behind the product you buy, you can justify to do less yourself
- Have a good partnership with the production- colleagues
 - hear what they need for a smooth process, involve them in the decisions what to test, it will be of benefit
- Have all this in written
 - Statistically based, scientifically sound
 - Justifiable
 - Standardized procedures

make the regulations your friend

End of Part I

Incoming inspection how to set up in practice

pda.org

Part II – how to set up in practice

- Specification
- Sampling
- Sample Size
- Equipment, Tools
- Documentation
- Supplier Certification

pda.org

What is the Specification?

"all appropriate written specification"

"Full analysis"

"Reliability of Certificates of Analysis"

All documents describing the material belong to the specification

- Technical Drawing
- Material Characteristics (including Compliance bulletin,)
- Regulatory Requirements (e.g. Ph. Eur., USP, JP, ISOs)
- Test Parameter (including suppliers DEL)
- Certification of Parameter

pda.ord

Index of a Packaging Material Specification (Example)

- 1. Material Specific Chapter Technical Drawing
- 2. General Chapter
 - 2.1 Material & Design
 - 2.2 References & Standards
 - 2.3 Packaging Instructions
 - 2.4 Quality Acceptance Criteria
 - 2.5 Supplier control samples (sampling plan)
- 3. Characteristics / Specifications
 - 3.1 Criteria for Batch Release
 - 3.2 Additional Criteria e.g. glass grain test anually
 - 3.3 Specific Criteria e.g. microbial testing
- 4. Sample Procedure & AQL Acceptance

Quality control needs Specifications

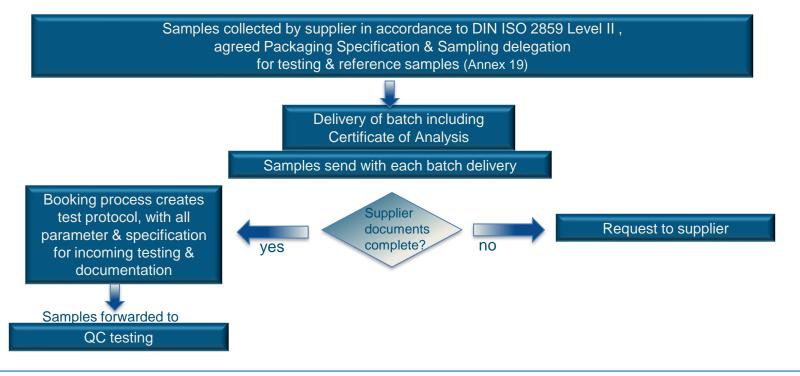
Batch testing / release is based on these documents

- It is recommended to agree on inspection methods upfront with supplier
- Visual Inspection (limit sample, defect catalogue)
- Specific methods not described in literature
- Method comparison
- Accuracy of measurement
- Sample defect catalogue


Contractual, Specifications to be referenced in the Quality Agreement!

pda.ord

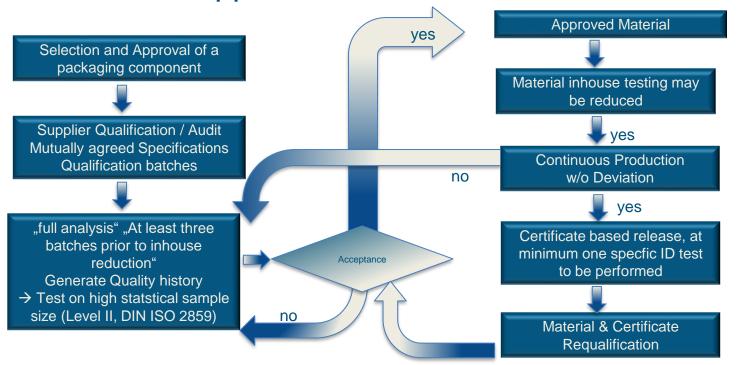
pda.org



Batch & sample delivery

Warehouse controls at delivery

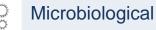
- ... to be checked at delivery
- Correct pallets used (heat treated)
- Correct labeling
- No visible transport damages
- Documents complete and correct (delivery note, certificate)
- Correct supply chain (supplier manufacturer)



pda.ord

Material Approval Process

Performance of QC-testing


Suppliers certificate

Attributes

Chemical Analysis

Dimensions

Functionals

- EU GMP Part 2, 7.31
 - > 3 batches full analysis prior to inhouse reduction
- CFR 211.84 d
 - shall be tested... lieu of such testing certificate may be accepted
 - > at minimum Certificate & one specific ID-test
- Pre-defined testing schedule
- Regular requalification /verification of certificate data
- Depending on your needs, processes, CCS
- Justified in written

Certificate check

Content (examplarily)

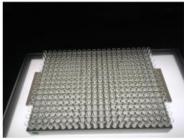
- Product ID, name/number and description
- Specific dates manufacturing, sterilisation, release
- Specific critical to quality criteria
- Statement of conformity

reference to Specification, Pharmacopoeia, ISOs

If CoA

- Criteria, specification, result, evaluation
- Signature by qualified personnal (Quality function)

pda.ord



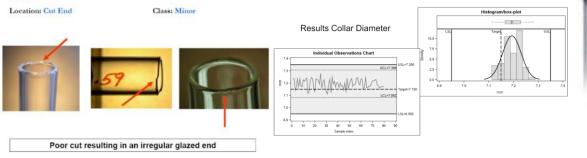
iliil)

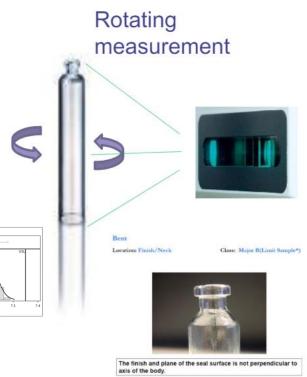
Visual Inspection by Attributes

- Light conditions
 - non specified, most applied: Ph. Eur. Method 2.9.20
 Particulate Contamination: Visible Particles
 - Distance to (naked eye)
 - Light box/black white background
- Documentation of inspection results
 - Reporting of individual inspection criteria
 - One generic (sum) criteria, combined with a defect catalogue and the corresponding AQL
 - if deviating to supplier, complaints may be challenging

Dimensional testing

Gauges & manual devices vs electronic camera systems

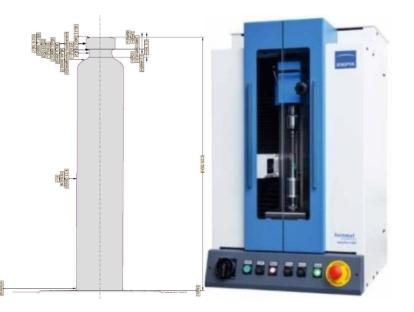

...depends on specification and assessment of accuracy needed



Dimensional testing

- Three-dimensional rotationsymetric results
- Contact-free measurement
 - Evaluation of multiple parameter of complex bodies

Bad Cut



Challenges in semi-automatic methods

How to set the method programm

- needs knowledge
- may be crucial to be aligned with supplier

Unit of measurement	Characteristics	
mm	Glazing ring diameter	
mm	Body diameter	
mm	Neck diameter	
mm	Flange diameter	
mm	Flange height	
mm	Neck height	
mm	Total lenght	
0	Upper locking ring angle	
0	Lower locking ring angle	
0	Shoulder angle	
mm	Excentricity	

pda.org

Documentation

Supplier documentation

- Delivery note
- Certificate
- Specifications
- Test Protocol

Test performance

- valid SOPs
- Released Test Methods
- Agreed Specifications
- Released Test Plan

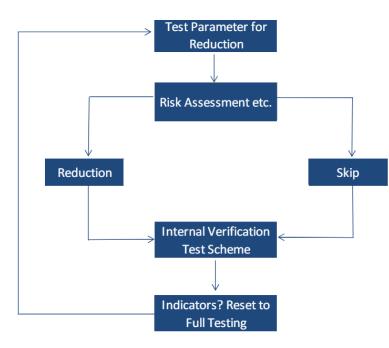
Inspection documentation

- Raw data & Results via test protocols and log books
 - Visual
 - Dimensional
 - functional
 - Chemical/ Microbial
- Equipment performance- SST and Audit trail
- Evaluation

ALCOA

Risk based incoming inspection system

- Test at minimum 3 batches according to all appropriate written specification
- Build a quality history (material & supplier)
- Allowed to apply reduced testing
- Close loop to findings and deviation in production
- Have a flexible loop back to batchwise testing


- Prerequisite for reduced testing
 - Quality History
 - Quality Management System
 - Verified Supplier Certificate
- Risk Analysis in written to evaluate potential impact
 - Reduction of individual test parameter
 - Supplier results disclosed on CoA
 - Determination of verification strategy
 - SKIP-Lot testing

Example of a reduced testing scheme

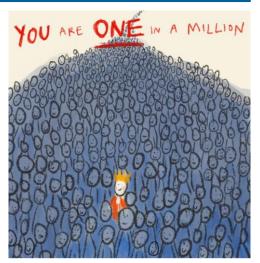
End of Part II

Part III

Inspection of glass

Challenges – to avoid and to consider

pda.org

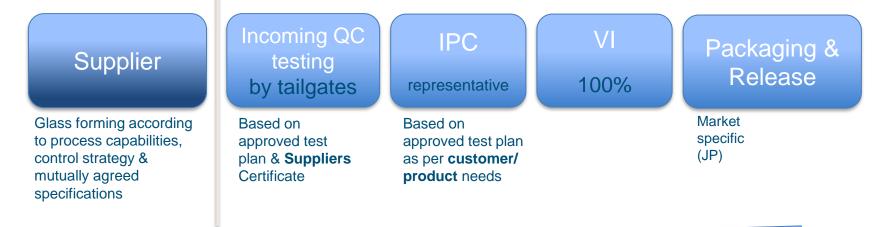


Distribution of Defects

- Defects / Imperfections are not always distributed across the entire batch
 - → Tailgates need to be representative to catch the standard distributed ones
- Rare or nested defects may not be detected during incoming control

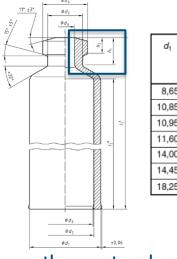
 \rightarrow need a control loop from production \rightarrow QC \rightarrow supplier

Glass forming process variability controlled by IPC & control cameras


https://poetandpainter.co.uk/cdn/shop/products/FP3009Onel/ aMillion_1200x1200.jpg?v=1638884379

Control strategy

Specifications and controls need to be harmonized Does the end-product specification fit to the components specification?


align Specification for Attributes

Glass forming brings some variance

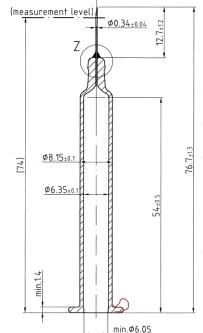
• Glass container for the pharmaceutical industry are standardized, by ISOs

												Dime	Maße ensions	
d ₁	Grenz- abm.	d ₂	Grenz- abm.	d ₃	d_4	Grenz- abm.	d 5	Grenz- abm.	d ₆	Grenz- abm.	h ₁	Grenz- abm.	h ₂	Gr
	tol.		tol.			tol.		tol.		tol.		tol.		t
	±		±	min.		±		±		±		±		
8,65	0,1	6,85	0,1	6,55	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0
10,85	0,1	8,65	0,1	8,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0
10,95	0,15	9,25	0,1	8,95	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0
11,60	0,15	9,65	0,1	9,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0
14,00	0,15	12,00	0,15	11,65	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0
14,45	0,15	11,85	0,15	11,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0
18,25	0,15	16,05	0,15	15,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0

• these standards might lead to uneccaptable variances of certain dimensions especially for fast running lines, depending on format

Continuous monitoring

- It can be important to know and understand the characteristics of the container of individual suppliers and their forming lines especially when using second source strategy
- Monitoring of critical dimensional characteristics can give a good understanding of the packaging components



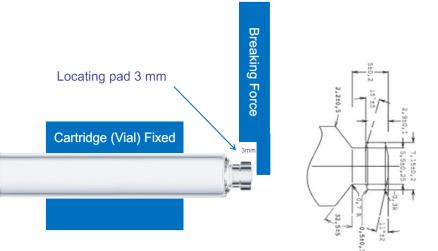
Glass forming and breakage risk

- as per the technical drawing dimensions seem fixed and straight
- free forming might lead to variances
- variances might impact testing and lead to breakage in production or latest within devices at the patient
 - Single sided breakage event at incoming is a defect or not?
 - \rightarrow what is the specification and method agreed?

Glass strength and breakage risk

- · Glass has no elastic constant for stability
- Small superficial defects can have an impact on stability and breaking resistance
- Glass to glass contacts during processing can be critical
- Processing will have an impact
- How to investigate?

pda.ord

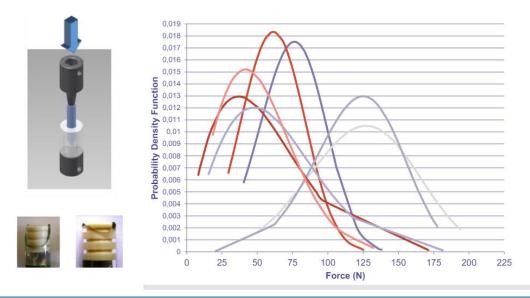

Glass strength, forming and breakage risk

표표 H H	표표	
ΨΨ	ŲΨ	

Functional test at incoming control, ISO based

- Breakage test for cone strenght
- Finger flange breakage
 - might give hints on underestimated forming issues

Investigational tests



Mimic the process or application

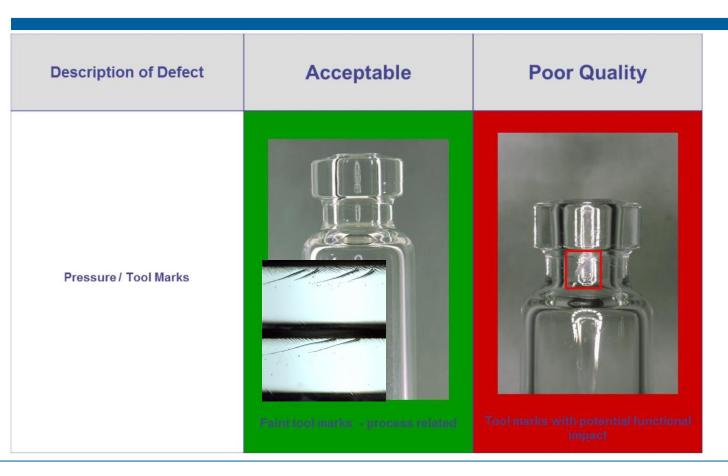
Glas stability testing -stopper mouth

- Check for suitability of component
 - In the process (R&D)
 - For application
- Try to specify test with your supplier (already described Method, ISO?)

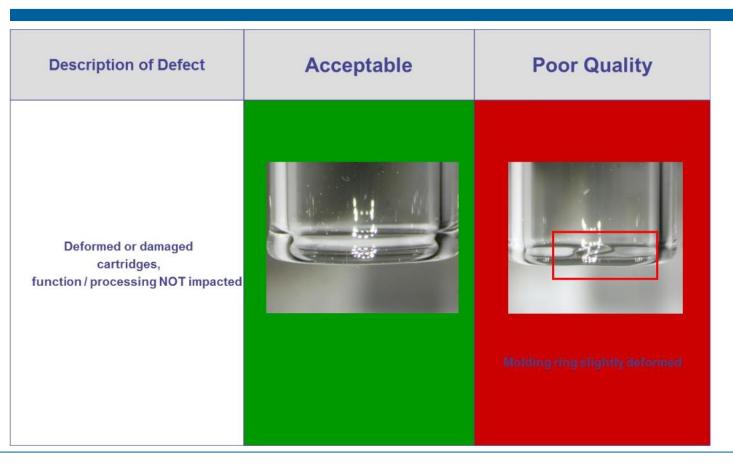
pda.org

61

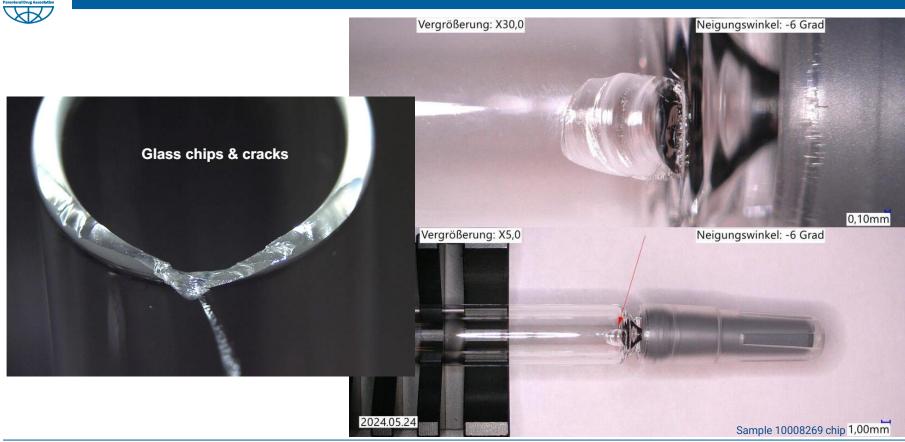
Attribute Defect pictures and differentiation


Definition of Defects

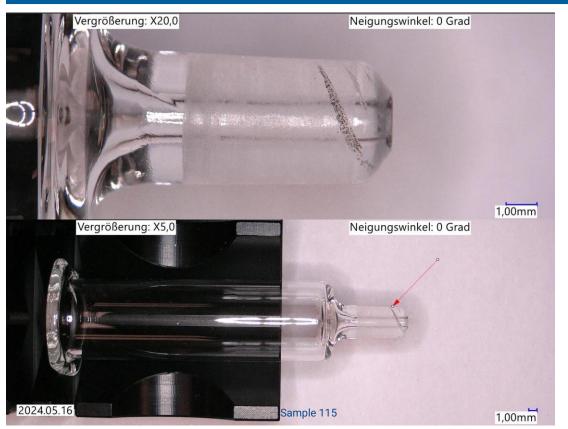
- Can be quite subjective for visual parameter
- The one's mutually agreeing on the defects and descriptions might not be the ones applying it in daily work
- Make sure everybody knows what is meant



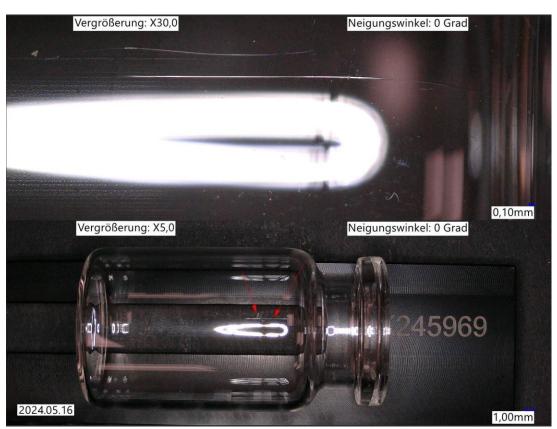
Description of Defect	Acceptable	Poor Quality
Deformed or damaged cartridges, function / processing impacted		

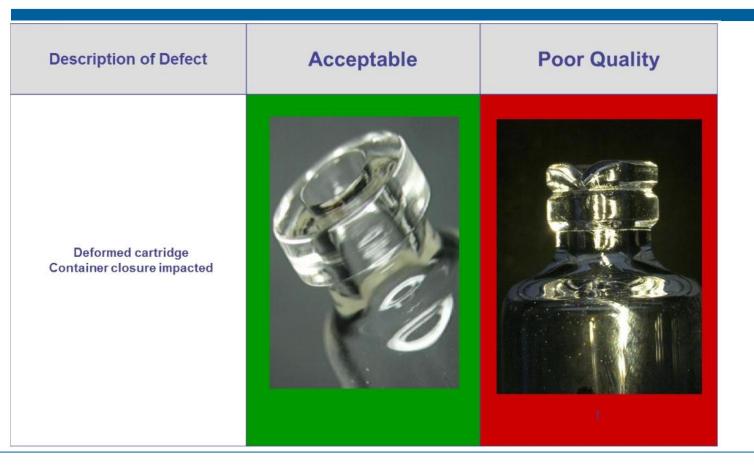


Description of Defect	Acceptable	Poor Quality
Partially or not molded cartridges function / processing impacted		



PDA[®]



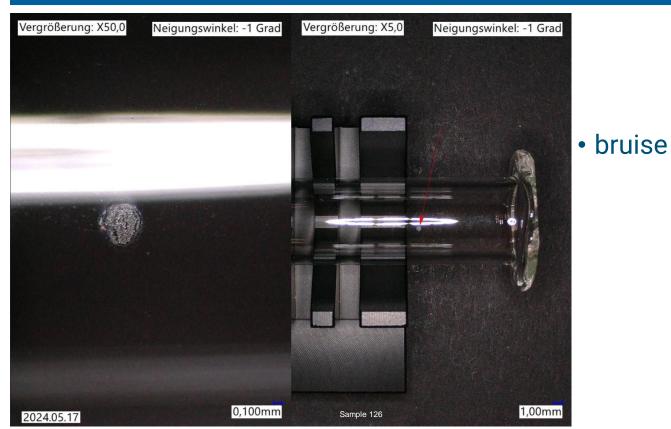


Crack or Airline??

If Airline: open or closed?

Container closure integrity impacted?

Batch impact or singular event?



Description of Defect	Acceptable	Poor Quality
Visible baked glass grit / chips On the glass surface		

End of part III

coordination manufacturer $\leftarrow \rightarrow$ customer

Quality management system

Drug Product manufacturer produce according to cGMP Suppliers do not ...?

ISO 15378:2017 (en) Quality Management System for Medicinal Packaging Material Supplier

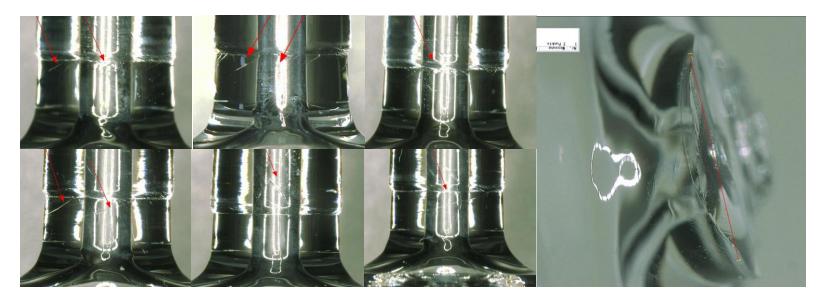
Specifies requirements for a quality management system for manufacturers of pharmaceutical and medical device/ primary packaging materials. Manufacturers need to demonstrate their ability to consistently meet customer requirements, including regulatory requirements and international standards as applicable.

oda.ord

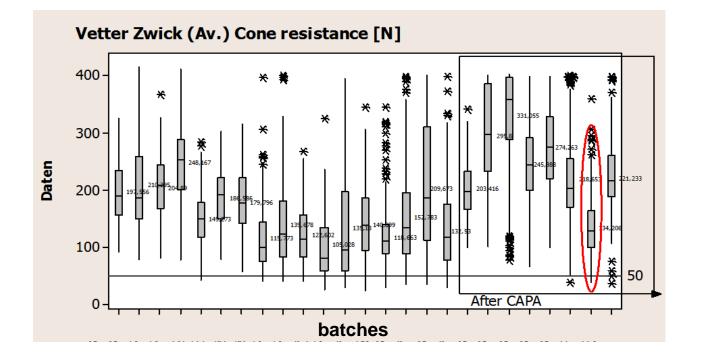
Supplier Approval Process

Case study I

Cone breakage at incoming


- Series of batches measured OOS
- Suppliers` data were borderline but ok
- \rightarrow Methods not aligned?
- → Deep method & equipment investigation startet

Root cause investigation

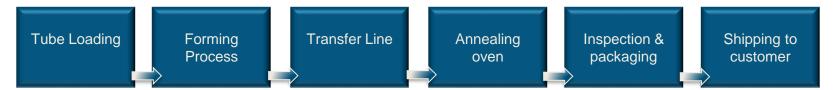


• Breakage at the scar

Case I Root cause Analysis

- Method & Equipment investigation showed unexplainable offset
- CAPA implementation show improvements
- no full consolidation as now line-differences at supplier were revealed
- Single root cause could not be identified
- Several contributing factors have been identified and related improvements implemented at both parties
- Since implementation of the related CAPAs no further batches have been rejected
- \rightarrow Partnership with supplier is an important factor for resolution of this type of issues

Case Study II: vial collar with brown contamination after sterilisation



Investigations

Suppliers` Process Analysis Potential for Contamination?

by tube \rightarrow not likely while forming \rightarrow would get obvious earlier transfer \rightarrow no contact (only) to collar annealing oven \rightarrow no contact only to collar Inspection & Packaging \rightarrow ...? Shipping \rightarrow ...?

Root cause analysis

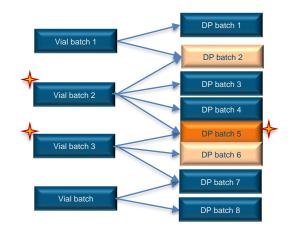
Case I

• Investigation inconclusive

- Most probable root cause: oil contamination from the polypropylene box

Similar defect pattern at another company

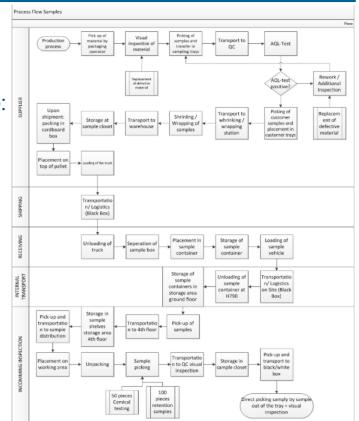
- Investigation with clear root cause found
- Foil residues from the packaging were melted on the collar
- After heat tunnel sterilisation burned to brown residues
- \rightarrow What looks similar must not be the same
- \rightarrow Close interaction needed with any party involved in the process ...



Case study III

Finding at least in Drug Products final visual inspection

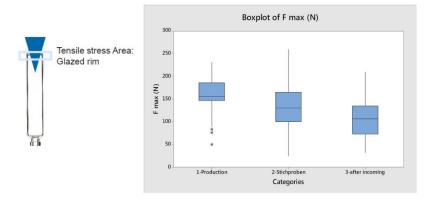
- Containment and Drug Product impact may be high, but unclear
- Systemic and nested defects may contribute
- Shared investigation needed for the combined processes

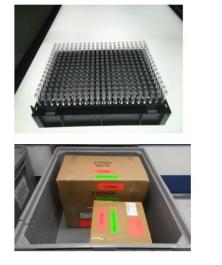

Case Study IV Tailgates

Batches rejected due to increasing high defect rate: chipped glazing

Resorting did reveal 0.000 - 0.002 % of defects in the batches

→No general batch quality issue→Representativeness of tailgates?!





Investigational studies & Improvements

- Single root cause could not be identified
- Several contributing factors have been identified and related improvements implemented at both parties

Thank you

References

EudraLex - Volume 4 - Good Manufacturing Practice (GMP) guidelines Part I, Chapter 1: Pharmaceutical Quality System Part I, Chapter 4: Documentation Part I, Chapter 5: Production Annex 8: Sampling of Starting and Packaging Materials Annex 19: Reference and Retention Samples

Code of Federal Regulations 21 CFR 211 Section 211.80 General requirements Section 211.84 Testing and approval or rejection of components, drug product containers and closures

ISO 15378:2017 Primary packaging materials for medicinal products -- Particular requirements for the application of ISO 9001:2015, with reference to good manufacturing practice (GMP) DIN ISO 2859 Sampling Procedures for Inspection by Attributes, -3 Skip Lot Testing DIN ISO 13926 Pen Systems - part 1: Glass Cylinders for Pen-Injectors for Medical Use

PDA Technical Report-43 Revised: Identification and Classification of Nonconformities in Molded and Tubular Glass Containers, for Pharmaceutical Manufacturers, 2013 Principles for the Defect Evaluation Lists for Packaging Material, Edito Cantor Verlag fur Medizin und Naturwissenschaften GmbH, 5th Edition 2017

