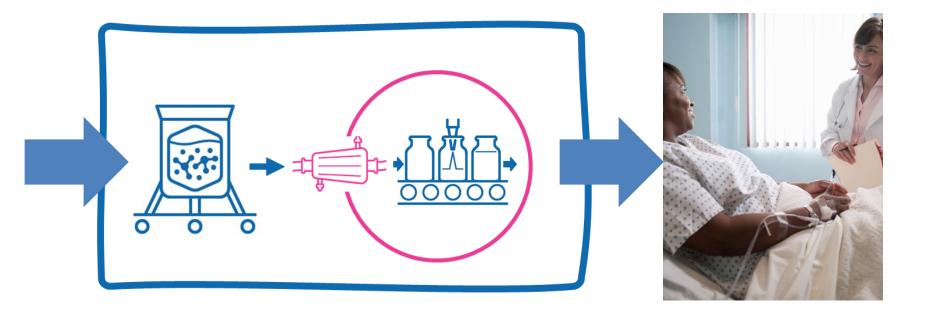
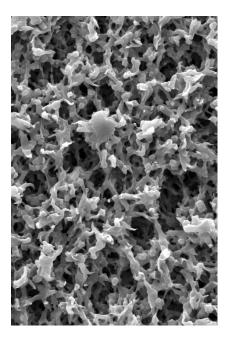
Sterile Filtration

PDA EU00192 Manage Your Aseptic Filling Line 4/5 September 2024


Simone Biel, Merck Life Science KGaA Marco Klatte, Merck Chemicals GmbH


The Filter Makes the Drug Sterile

Sterile Filter Definition - more than just "0.22 µm"

EU GMP, Annex 1, 2022

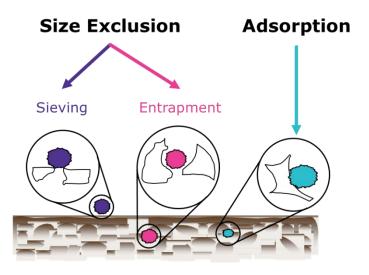
"Sterilizing grade filter – A filter that, when **appropriately validated, will remove a defined microbial challenge** from a fluid or gas producing a sterile effluent. Usually, such filters have a pore size equal or less than 0.22 µm."

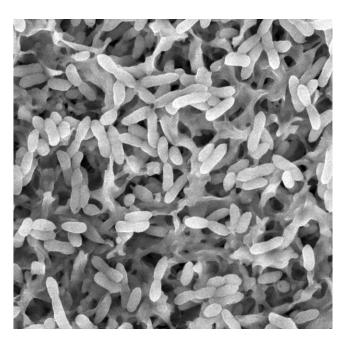
FDA cGMP, Guidance for Industry, 2004

"A sterilizing grade filter should be validated to reproducibly remove viable microorganisms from the process stream, producing a sterile effluent. Currently, such filters usually have a rated pore size of 0.2 μ m or smaller."

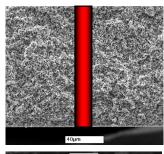
EMA, Guideline on sterilisation of the medicinal product, 2015

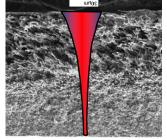
Filter retention capacity to be validated by challenging the filter membrane with justified indicator organism (*Brevundimonas diminuta*) at a minimum concentration of **10⁷ CFU per cm²** of filter surface area.

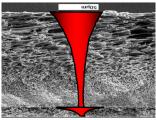

Filter Membrane


The Key Component !

Retention Mechanismus




Membrane Characteristics


- Material
 - PES (Polyether sulfone)
 - high flux and capacity
 - PVDF (Polyvinylidene fluoride)
 - Low protein binding (adsorption)

Pore size

- 0.2/0.22 µm
- $-\,$ Other sizes: 0.45 μm , 0.1 μm
- Pore structure
 - Symmetric
 - Asymmetric
 - Composite

Symmetric

Mean pore size constant through entire thickness

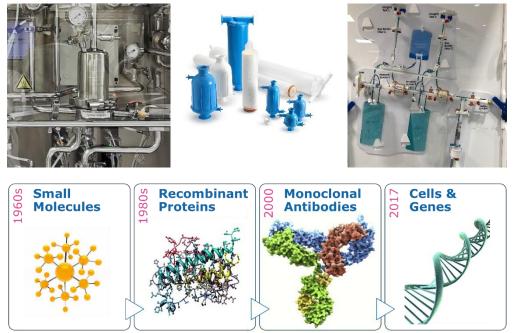
Asymmetric

Mean pore size changes through entire thickness

Composite

Two distinct layers with different mean pore sizes in a single membrane layer

Filtration and EU GMP Annex 1


Regulatory Background

No one filtration set-up fits all

- Process fluid
- Membrane type and pore size
- How many filters
- Interactions (adsorption, leachables)
- Validation
- Process parameter
- Filter integrity testing (FIT)
- Environment

• ...

Sterile Filtration: Annex 1 Must Haves

Sterility Assurance

- Sterile filter
- Filter compatibility
- Bacterial retention
- Integrity

Process Control

- Allow operation within validated process parameters
- pressure, wetting, flushing, hold-time, flow rate, maximum volume

Quality and Efficacy

- No adsorption (API, excipients)
- No leachables
- No particles

Filter

Sterilising

Non-sterilising

Data to be provided for market authorization

Parameter

	Non-sterilising	Sternising
General information on filter		
Type of material, nominal pore size	X	Х
Number of filters	X	Х
Filter area	-	X
Filter integrity test	-	Х
Filter validation		
Potential sorption of solution components to filter	X	Х
Solution Compatibility	X	Х
Filter retention capacity		Х
Filter integrity test limits	-	Х
Extractable and leachable substances from the filter	x	Х

EMA/CHMP/CVMP/QWP/850374/2015 (2019), Guideline on the sterilisation of the medicinal product, active substance, excipient and primary container

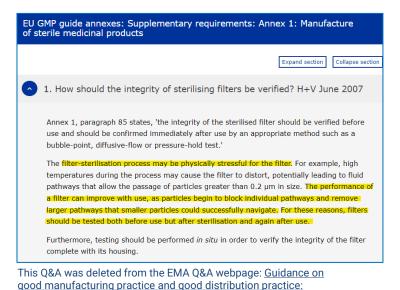
Bacterial Retention Test Strategy

Simulate the actual process on a laboratory scale while **maintaining** / keeping constant parameters:

- Product-filter-bacteria contact time
- Differential pressure and/or flow-rate
- Filtered volume/cm²
- Temperature
- Active filtration time for pump driven processes

What are the top 3 EU GMP Annex 1 topics still subject to interpretation and where further clarification with authority would be helpful?

PDA Good Aseptic Manufacturing conference in Stuttgart/Germany, 15/16 May 2024. Interactive questionnaire session day 1.



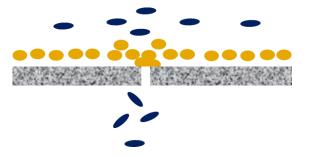
PUPSIT – not a new requirement

Annex 1 (previous), The integrity of the sterilised filter should be verified before use and should be confirmed immediately after use by an appropriate method ...

Annex 1 (2022), The integrity of the sterilised filter assembly should be verified by integrity testing before use (pre-use post sterilisation integrity test or PUPSIT), to check for damage and loss of integrity caused by the filter preparation prior to use.

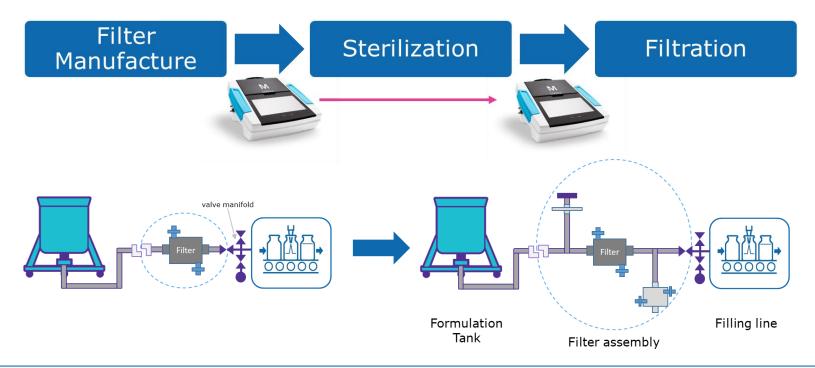
FDA cGMP, Integrity testing of the filter(s) can be performed prior to processing, and should be routinely performed post-use. It is important that integrity testing be conducted after filtration to detect any filter leaks or perforations that might have occurred during the filtration.

Ouestions and answers



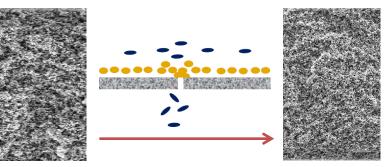
Filter Flaw Masking

Performance of a filter can "improve" with use


- Flaw large enough to pass microbiological contamination
- Flaw small enough to be masked by clogging
- Material/particle burden must be present that can plug the defect to such an extent that it is not detectable by post-use integrity test

PUPSIT Implementation

Filter Flaw Masking Test



Brian Thome, Brian Joseph, Dawood Dassu, Jeff Gaerke, Leesa McBurnie, Mandar Dixit, Magnus Stering, Sean Tomlinson, Scott Millis, Stephanie S Ferrante and Carl Weitzmann PDA Journal of Pharmaceutical Science and Technology May 2020, pdajpst 2019 011387; DOI: https://doi.org/10.5731/pdajpst.2019.011387

AND ALL MADE		CORRECTION OF THE OWNER	LAL L		-	-									
226Binlngie	\$7252	66Daffer	CAL	32Bu	zer	PE		55.11	\$3.66	55.11	33.36		54.39	55.11	55.84
227Biologic	FES 2	67Duffer	FVD71	33Du		12:					23.2	1.01			
228Polymer	FYDF2	68Biologic	FVD71	34Bis			DF1	50.1	54.2	53.2	23.1	0.99	47.2	48.2	47.2
229Dmg	P#3.2	(3) go page (3)	F252	35Bis		PES					23.1	1.02			
230Dmg	PES 2	We as persion	FESS	36Du	far	12	4				23.1	1.01			
231Drug	PES 2	91D mg	EVD23	37Bu	E.r	PES	1	51.49	54.4	57.22	33.27	1.00	53.64	54.48	58.14
232Drug	PES 2	20Dmc	PAL	380%		1923		4797	52.71	56.73	3345	1.00	47.55	54.72	60.32
233D rug	PES2	23D mg	FVD73	3904			DF1	51.69	54.74		39.68	1.00	53.85	5327	53.1
234Drur	FES 2	745 uppersion	FVD73	40Bis			DF1	5533	53.44		38.68	1.03	51.3	5325	51.2
235Drug	PES 2	75D rog	PVD73					4909	54.92	51.57	34.85	1.03	50.67	57.08	
2366 object	PTYE1	96D rog	FVD73	41Bic		CA									54.42
2376 olympt	PVDF2	27D mg	FVD73	42Bis	alogic	CA	1	48.49	55.6	54.96	34.85	1.00	50.58	58.87	56.48
2385 olmat	PVDF2	23 Biologie	FESS	1 38.0	381	55	42.1	1.81	36.4	57.8	38	39.4			
2100 obmat	PVDF2	23Doffer	EVD73	52.94	52.94	52.21	30.85	1.0	55.84	35.84	53.66	28.44			
240E citwat	FIFEL	800 mar	PA 1	551	47.1	52.2	30.5	1.0	42.3	48.6	47.1	341			
0410-3-mm	000.00	81 Biologic	FVD73	51.82	53.66	52.21	40.61	1.0	55.11	57.27	52.54	36.16			
		820 mg	FVD73	\$3.55	52.94	52.21	41.34	1.0	45.41	46.43	47.56	29.73			
		83D rog	FAL	52.21	52.94	47.14	34.00	1.0	67.14	47.05	47 N	31.51			
		84D rog	EVD73	- 50	22	52.2	- 22.5	1.0	56.4	- 54	55.8	377			
		85Dmg	FVD73	51.69	48.95	52.12	34.08	1.0	\$3.66	56.5%	52.94	S4.08			
		86D mg	FVD73	49.33	51.45	5.49	31.18	1.0	48.22	58.76	47.66	26.83			
		87D mg	FVD73	5	54.4	49.3	23.4	1.0	2.7	\$7.3	551	363			
		SOD rise	PVD73	53.66	52.94	25.11	24.91	1.0	67,00	49.33	66.41	20.20			
		89D rog	FVD73	53.66	54.39	23.66	35.55	1.0	68.55	52.23	50.36	34.68			
		90D rog	PA 1	50	56.6	52.2	34.8	L.0	49.3	(9.3	429	30.5			
		SLDing	FIEL	34.8	34.1	22.6	34.1	1.0	34.8	33.4	29.7	311			
		92Baffer	FVD73	52,23	\$2.94	2.40	21.03	1.0	\$2.94	14.93	90.04	32 #3			
		93Biologic	FVD73	\$3.65	\$2.21	\$2.21	38.44	1.0	\$5.11	55.84	50.36	36.26			
		94D rog	EVD23	47.34	50.04	30.76	29.85	1.0	58.89	55.84	55.11	30,46			
		SiDing	EVD73	\$2.94	49,31	- 55.11	39.71	1.0	48,59	50.04	50.64	52.63			
		96Dmg	FVD73	50.04	49.91	30.04	34.08	1.0	48.59	6817	48.39	24.66			
		\$7D rog	EVD/3	54.39	54.35	216	36.95	1.0	55.84	52.94	52.94	541.8			
		S9D rog	PA L	522	45.4	46.4	23.5	1.0	50.2	56.5	32	98.4			
		99Dmg	PA 1	\$37	51.4	55.1	34.1	1.0	47.7	47.1	50.8	37.3			
		100 Riologie	LCAMPINE	63.17	69.62	32.74	42.51	1.0	\$2.94	60.92	62.37	49.50			
		1010 rug	12:2	55.3	36.4	53.7	40.6	1.0	5.7	60.6	55.0	38.4			
		1020 rog	PVD23	52.2	25.1	20.8	26.1	1.0	52.2	69.3	20.8	26.1			
			FVD2-									1			
		100 mg*	hydrog hobie	16.7	19.6	16.7	23.2	1.0	28.3	428	263	49.3			
		1 1040 ros	PDT	1 349	- X U	26.9	·8 G	1.6	728	14.10	724	21			

Identify if a 0.45 μ m filter appears to meet the specification of a 0.2 μ m filter

- 518 process fluid/filter combination
- 5 combinations where the bubble point shifted

 $0.45\,\mu m$ filter appears as a $0.2\,\mu m$ filter

Exception Process Constraints - "e.g., Small Volumes"

In depth knowledge and control:

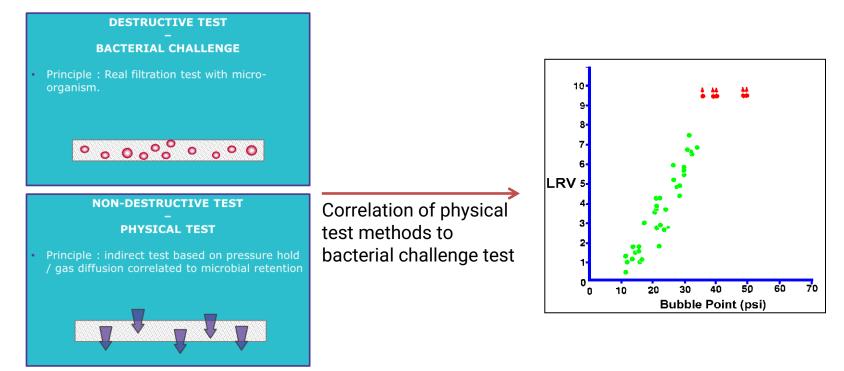
- filter sterilisation process
 - Minimize the potential for damage to the filter.
- supply chain
 - Contract sterilisation facilities.
 - Packaging and transport of the sterilised filter.
- process knowledge:
 - Any risk of impact on filter integrity values?
 - Potential masking effects?
 - Pre-filtration to clarify the product prior to sterile filtration.



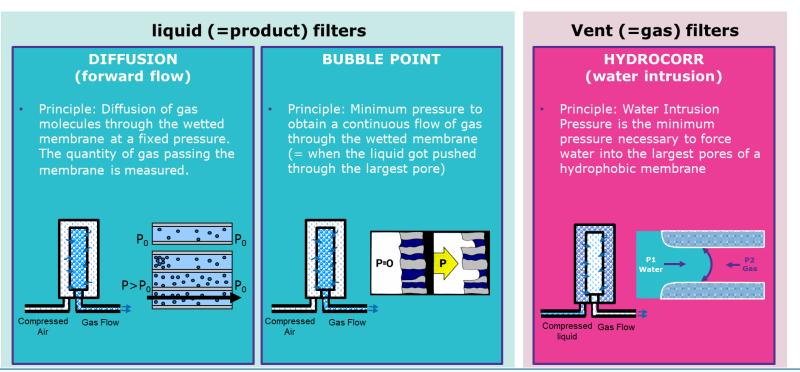
Recombinant protein, large scale manufacturing

- Beside "small volumes" no further examples of process constraints
- Regulators emphasize to "ensure drug availability"
- Alternative approach is not to overcome the challenge of PUPSIT implementation

pda.org


Filter Integrity Test

Test Methods

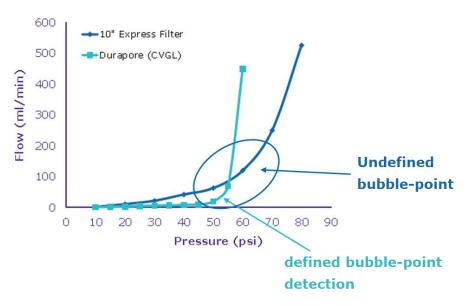

Filter Test Methods

Different Types of Filter Integrity Tests

Test depends on the membrane type

Symmetric membranes, e.g. Durapore

- Pores like "cylinders"
- Wetted thickness is uniform until applied gas pressure clos to bubble point



Asymmetric membranes, e.g. Express

- Pores like "funnels"
- Wetted thickness varies non-uniformly at pressures above diffusion test pressure

Diffusive Flow Curve

FIT Methods Consideration for Single-Use Assemblies

	Diffusion	Bubble Point
PRO	 Lower test pressure → reduced stress on SUS Less gas volume generated downstream → minimized flush bag size Minimized risk of back pressure Faster Resilient to product excipient adsorption Softer wetting conditions required 	 Resilient to temperature variation Invariant for one membrane/fluid combination Independent from filter surface area
CON	 Silicone tubing permeability to gas ~1 ml/min⋅m 	 Higher pressure level → large gas volume → requires large flush bag Risk for back pressure Slower Impacted by polysorbate/tween adsorption Strong wetting conditions required

Automated Integrity Tester

- No downstream intervention
- Easy to validate
- Eliminates operator subjectivity
- Record keeping
- Bubble point and diffusion test
- Receipe management

Example of Test Report

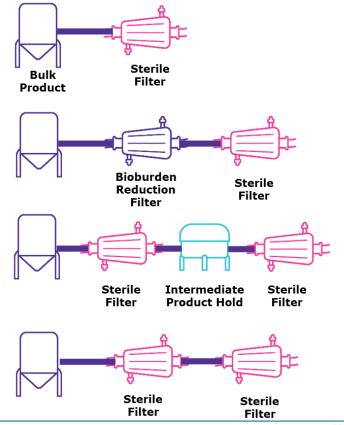
- Provides graph, table, and results for accurate determination of value when the instrument is stable
- ISO certified operator training for customers
- Training enables correct interpretation of test results

Integritest[®] 5

General		Results		Conclusion		
Instrument Name	IT SDEMO	Measured Bubble Point	440.2 kPa	Start Date UTC	2016/05/16 20:15:48	
Test Run ID	20160516201548	Measured Upstream Volume	1 ml	Start Date g	5/16/2016 4:15:48 PN	
Test Type	Bubble Point			Test Pass/Fail	PASSE	
Test Na me	8 P Test1			829200358	99982	
Test Version	0					
Test Description						
Test Parameters		Filter Parameters		Operator Inputs		
Minimum Bubble Point	206.8 kPa	Filter Name	Gross	Operator Name	ITS Administrato	
Number of Filter Round	s 1	Catalog Number	123-456	Product Batch		
		Filter Size	2.0 in	Filter Lot Number Filter Serial Numb		
		Wetting Fluid	Aqueous	Comment	zr	
		Wetting Fluid Description	no wett fluid			
Messages						
The instrume	ent calibration is ove	erdue.				
	kPa/min vs_kPa			Flow (kPa/min)		
900		8.82		1.:		
				0.3		
600				0.5		
500				0.3		
300				1.:		
000				2.6	5 446.7	
262.0	543.0 533	a 4230 4630	0. 602	6.0) 456.3	
	P 100 4 10 5	resta 🔍 martine 📶 🛛 🖓 🔍 Herri Lar	33 Va/ma •	Б.Б	8 459.3	

How Many Filters?

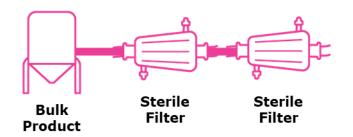
Is redundant filtration a must?



Filtration Process Design

Annex 1, 8.80

- Suitable bioburden reduction prefilters and/or sterilising grade filters may be used at multiple points during the manufacturing process to ensure a low and controlled bioburden of the liquid prior to the final sterilising filter.
- Due to the potential additional risks of a sterile filtration process, as compared with other sterilisation processes, an additional filtration through a sterile sterilising grade filter, as close to the point of fill as possible, should be considered as part of an overall CCS.



Redundant Filtration

Annex 1, 8.92

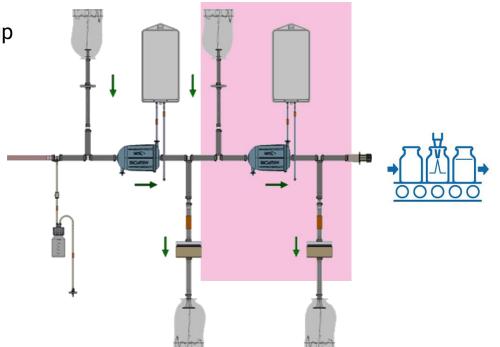
- a second redundant sterilising grade filter as a backup
- sterilising process is validated as only requiring one filter
- in the event of a failure of the post-use integrity test on the primary filter, post-use integrity test on the secondary (redundant) filter should be performed

Benefits

 Potential batch release if primary filter fails integrity test

Considerations

- Higher hold-up volume
- Higher system complexity
- Leachables, Adsorption



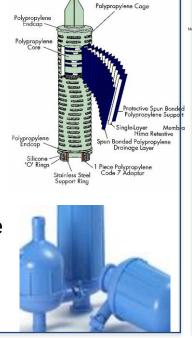
Redundant Filtration - Challenges

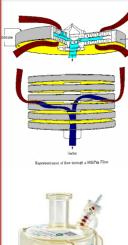
- · Increased complexity of the filtration set-up
- Filter inside/outside isolator?
- As close as possible to the point of fill?
- Manipulation of the sterilized filtrate side
- Closed system on the filtrate side
- Additional vent filters to be tested
- Product dilution with wetting fluid
- Protein adsorption
- Leachables

...

Filtration Process

Process Design Considerations





Filter Device Design

Pleated Membrane

- Available in PES of PVDF
- Pleated membrane enable higher filtration flow rate
- Available from XL150 to XLT 30"
- Good forward and reverse pressure resistance
- Preferred for high flow

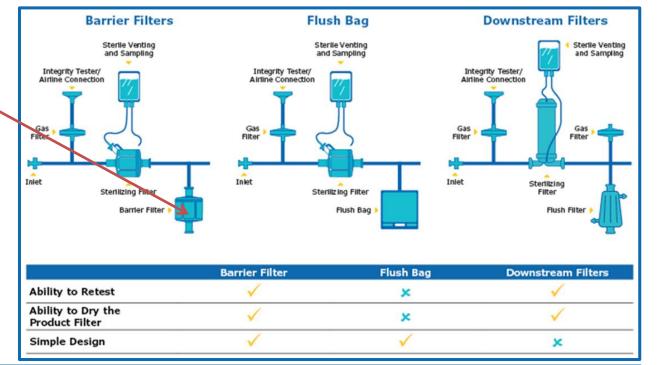
Stacked Disk

- Available in PVDF
- Stacked disk enable low hold up volume & increased product recovery
- Available from 100cm² to 1000cm²
- Low resistance to back pressure

Preferred for low hold-up volume

Filter wetting with product is the best option

	Water	Product
PRO	 Inexpensive fluid → COST EFFECTIVE Unlimited amount for flushing e.g., large filtration system, leachables removal, repeated wetting Test specification published No risk for flaw masking 	 Leaner design → EASE OF USE No dilution No drying Negligible risk of flaw masking
CON	 More sophisticated design water/air inlet and outlet Product discard for diluted product removal Filter blow down Duration 15' to 3h Mechanical stress 4 bar 	 Product specific FIT limit Product discard for leachables removal Product filtration "at risk" until PUPSIT result PUPSIT to be included as process condition in filter validation – revalidation might be needed.



Single-Use Assembly Supporting PUPSIT

Millipak Barrier Application

- PUPSIT
- Flushing of leachables
- Venting a sterile system during filter drying postflushing

Filter Inside or Outside of the Isolator?

Bulk Product	Transfer Pump	Sterile Filter(s)	Header Bag	Dosing Pump	Filling Needle(s)
	Out	side Grade	e A		Grade A
Bulk Product	Transfer Pump	Sterile Filter(s)	Header Bag	Dosing Pump	Filling Needle(s)
Floduce	Outside (bag		ide A
Bulk Product	Transfer Pump	Sterile Filter(s)	Header Bag	Dosing Pump	Filling Needle(s)
Out	ide Grade	A		Grade A	
Bulk Product	Transfer Pump	Sterile Filter(s)	Header Bag	Dosing Pump	Filling Needle(s)
Outside (Grade A		Gra	de A	

No "one solution fits all" - decision embedded in overall Contamination Control Strategy

Points to consider:

- Handling inside the isolator
- Filter integrity test in line
- Point-of-use integrity test of SUS
- Sufficient isolator space
- Environment

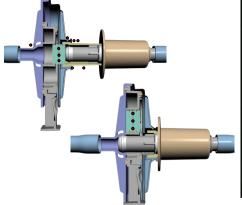
• ...

Closed System

Single-Use Filtration Assembly

Sterile Connection Device – Reduce Complexity

Complex assembly (PUPSIT ready and redundant filtration)


- Limitations in packaging
- Risk to lose integrity (handling!)

("Intrinsic") Sterile Connection Device

Design

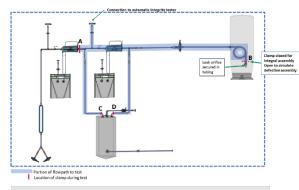
- Robust and consistent performance
- 100% air-integrity tested in manufacturing

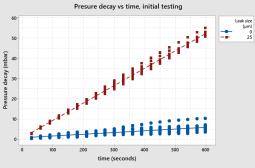
Brevundimonas diminuta aerosol

Validation

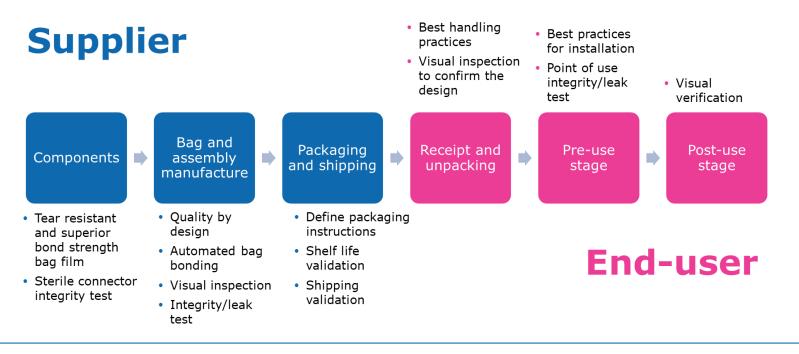
- Aerosolized microbial challenge test
- Aseptic Process Simulation

Handling

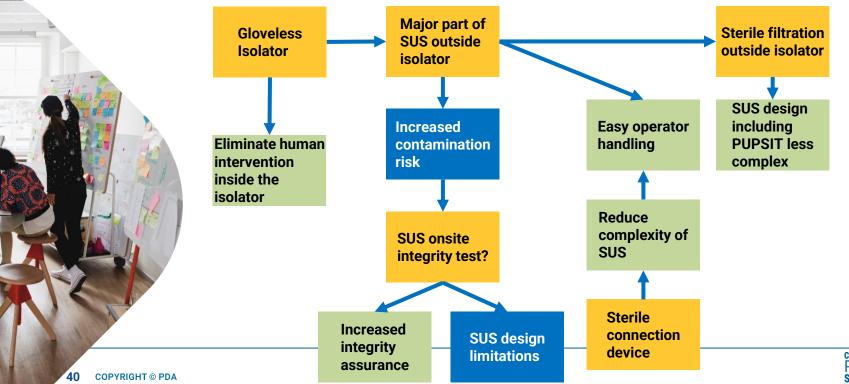

- Quick and easy
- Avoid operator mistakes



Onsite Single-Use System Integrity Test


Nicholas Batt et al., Chem. Ing. Tech. 2022, 94, No. 12, 1985–1994

SUS Integrity Assurance - More than a Test



Contamination Control Strategy (CCS)

Brainstorming Example: if the isolator doesn't have gloves

Key Component Filter Membrane...

...select the right membrane – material, filter area, pore size ...the more filter the better? – to be assessed during filter

validation

...sterility assurance - is more than PUPSIT

pda.ord

Let's practice PUPSIT – after lunch !

pda.org

PUPSIT Animation

Merck