Theory 2a

Dr. Julian Lenger

Scientific Laboratory Head in Drug Product Development at Bayer AG

julianh.lenger@gmail.com

PDA EU00144
Freeze-Drying in Practice
9 – 13 September 2024

Martin Christ
Osterode am Harz, Germany

Theory 2a+b

- Basic principles of freeze drying processes
 - Physical understanding
 - Critical process parameters
- Development and composition of a (biological) formulation
- Development of a lyophilization cycle: Practical advice
 - How to approach it? What are the most important parameters?
 - How to choose them?
 - Development of cycles for practical work

Basic principles

- Drying by sublimation of ice as well as desorption of adsorbed water
- Phases:
 - 1. Freezing phase
 - approx. 2-10 h
 - 2. Primary drying
 - approx. 5 h 5 d
 - 3. Secondary drying
 - <~13h

Freezing – Process perspective

Freezing - Product perspective

Recommendation:
additional equilibration
step pre-nucleation
during cooling

Freeze concentration

Reprinted from "Freeze Drying/Lyophilization of Pharmaceutical and Biological Products" edited by Louis Rey and Joan C. May, © 2010 Informa Healthcare

FIGURE 1 Supplemented phase diagram for sucrose. Arrows show freeze-drying process for a 10% sucrose solution.

Freezing – Impact of degree of supercooling

More Supercooling Means Slower Drying

Drying
Data From: Searles, et. al., J. Pharm. Sci., 90(7), 2001

Degree of Supercooling and Rate of Primary Drying

- For every 1°C increase in nucleation temperature, drying time is estimated to decrease by 1 to 3%^a
- Typical degrees of supercooling:
 - (Clean) Lab environment: supercooling down to -20 °C
 - cGMP environment: supercooling down to -30 °C or less

^a "The Ice Nucleation Temperature Determines the Primary Drying Rate of Lyophilisation for Samples Frozen on a Temperature-Controlled Shelf", Searles J.A. et al., 2001, J. Pharm. Sci., 90:7, pp. 860-871.

Freezing – advice for process design

- Decide if thermal treatment (annealing or controlled ice nucleation) shall be implemented → Theory 9
- Define loading temperature (usually: room temperature)
- Define process:
 - Equilibration step: decide temperature (above eq. freezing point) + hold time (min. 30min)
 - Coolin ramp rate $(0.2 2 \, ^{\circ}\text{C/min}) \rightarrow$ for scalability reasons: $0.3 0.7 \, ^{\circ}\text{C/min}$
 - Target temperature: min. 5°C below Tg'
 - Hold time dependent on fill depth: ≤ 1cm: 1h, 1-2 cm: 2h, >2h: 4h

Based on: 1) "Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update." Tchessalov et al. Pharm Res 40, 2433–2455 (2023)., 2) "Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice". Tang, X., Pikal, M.J. Pharm Res 21, 191–200 (2004).

Primary Drying

COPYRIGHT © PDA

Primary Drying - Sublimation

Side note: for every 1°C increase in shelf temperature, drying time is estimated to decrease by ~13%*

Primary Drying - Sublimation

Primary Drying-Barriers to mass transfer

Mass transfer in primary drying. Schematic of resistances (pressure in µm Hg).

100 μg Hg = 100 mTorr = 133 μbar

P₀ – equilibrium vapor pressure of ice at sublimation interface

 P_V – pressure in the vial

P_C – chamber pressure

P_{CD} – condenser pressure

Reprinted from "Use of laboratory data in freeze drying process design: Heat and mass transfer coefficients and the computer simulation of freeze drying," by MJ. Pikal, 1985, J. Parenter. Sci. Technol., 39:3, pp. 115-138. Copyright [1985] © Parenteral Drug Association.

Primary drying - product resistance to mass transfer

- Dry layer resistance to water vapor = biggest barrier to mass transfer during sublimation!
- Different behavior comparing amorphous (left) and (semi-)crystalline (right)
- Total solid content main driver for degree of resistance within one composition

h, cm

Reprinted from "Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update." Tchessalov et al. Pharm Res 40, 2433–2455 (2023). Copyright [2023] © Springer Nature

h, cm

End of primary drying: product temperature

- If stoppers are correctly placed, A indicates the end of sublimation in that probed vial
- Delay time to reach shelf temperature
 (B) due to
 - Cooling by heat exchange with nearest neighbors
 - heat capacity of product+container
 - Self-cooling due to beginning of desorption

Biggest bias: Tc-vials see lower degree of supercooling (Tc = nucleation site)

→ Representativeness for rest of batch?

End of primary drying: comparative pressure measurement

End of primary drying: summary

- Further methods:
 - **TDLAS**
 - Mass Spectrometry (H₂0)
 - NIR
 - microbalance
 - Heat Flux Sensor
 - Vial impedance
 - Dew point sensors

end point of primary drying." Pisano, R. (2020). Drying Technology, 40(1), 140–157

Primary Drying – advice for process design

- Determine the target product temperature (T_D): amorphous formulations
 - For drying times >2d: $T_{collapse}/T_{eutectic}$ minus 2°C
 - For drying times <10h: T_{collapse} minus 5°C
 - For drying times $10 \le t \le 2d$: T_{collapse} minus 3°C
 - Safety margin can also be calculated*
 - For (semi-)crystalline products: depending on equipment capabilities, a T_p of \sim -10°C to -15°C is recommended (dependent on T_{eu} of the crystalline solute)
- Next, either use a simple heat/mass transfer model like 1) <u>SP Scientific</u> <u>LyoCalculator</u> or 2) <u>LyoPRONTO</u> or determine p_{chamber} and T_{shelf} "by hand"
- Ramp rate typically: 0.5 1 °C/min; 1° drying time can be estimated²

^{*&}quot;Impact of natural variations in freeze-drying parameters on product temperature history: application of quasi steady-state heat and mass transfer and simple statistics." Pikal et al. AAPS PharmSciTech. 2018;19(7):2828–42.

Secondary drying - Desorption

- Comprises ramp + isothermal hold
- Ramp is critical for preventing collapse (amorphous products)
 - 0.1 to 0.2 °C/min amorphous
 - 0.3 to 0.4 °C/min (semi-)crystalline
- Target shelf temperature for SD and time are driving factors for obtained residual moisture content (RMC) in product
- Often, 3-6h at 40-50 °C suffice to reach < 0.5% (w/w) RMC
- Chamber pressure below 0.267 mbar*

^{*} Pc has almost no impact on drying rate, if kept below 0.267 mbar; for further details refer to: "The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure". Pikal et al. Int. J. Pharm. 60:3 (1990)

19 COPYRIGHT © PDA

Secondary drying - Desorption of sucrose

Reprinted from "Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update." Tchessalov et al. Pharm Res 40, 2433–2455 (2023). Copyright [2023] © Springer Nature

Secondary Drying – Pressure gauges

- Determination of 2° drying endpoint not accurate enough via comparative pressure measurement
- But in dependence of formulation properties and drying conditions, an increase in Pirani can be observed
- For advanced process developer: establishing an <u>excel-based model*</u> can be helpful

Secondary drying - advice for process design

- Define ramp and target shelf temperature; p_c not too important*
- Ramp is critical for preventing collapse (amorphous products)
 - 0.1 to 0.2 °C/min amorphous
 - 0.3 to 0.4 °C/min (semi-)crystalline
- Define isothermal hold at target shelf temperature
 - Often, 3-6h at 40-50 °C suffice to reach < 0.5% (w/w) RMC (see theory 2a, slide 19 for sucrose 5-15%)

^{*} Pc has almost no impact on drying rate, if kept below 0.267 mbar; for further details refer to: "The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure". Pikal et al. Int. J. Pharm. 60:3 (1990),

Progress of drying

Development and composition of a (biological) formulation

Requirements of a Drug Product

Special caution with proteins: Influence on undesirable adverse events and clinical efficacy, immunogenicity and pharmacokinetic profile through product specific degradation products.

Design of a (protein) formulation **Antioxidant** Preservatives (Multi-(Methionine) does-vials) **Buffer** Benzylalcohol system (His/HisHCI, variable Citrate, Tris) **Acetate** Lyo/cryoprotectants **Phosphate** and bulking agents light chain (Sucrose, Trehalose, Mannitol,...) heavy chain **Stabilizers during** freezing/thawing **Viscosity** (Sucrose, Trehalose) reduction e.g. tonicity adjusting **Arginine-HCI Surfactants** agents at the same (Polysorbate 20/80, \ Liquid vs. time Lyo IV Poloxamer 188) vs. SC

<u>Literature recommendation:</u> Marketed products in EU: Gervasi V, et al. Eur J Pharm Biopharm. 2018;131 (2017):8–24.

Lyo/cryo-protective excipients

Cryoprotectant

Stabilizes during the freezing process

- Non-specific stabilization by <u>preferentially</u> <u>excluded</u> excipients/solutes from protein surface (e.g., disaccharides)
- Protein chemical potential of native and denatured state is increased, but magnitude of exclusion varies directly with protein surface area → greater for denatured than native state
- Thus, free energy of unfolding (Δ G) is increased (Timasheff 1988; Arakawa, Timasheff 1985).

Lyoprotectant

Stabilizes during the drying process

 Water stablizes a protein in liquid solution by hydrogen bonding. The excipient replaces the hydrogen bonds of water during drying and thus stabilizes the protein (water replacement) & forms a glass

Lyo/cryoprotective excipients

Crystalline excipients

Ordered crystal structure

Amorphous excipients

Glassy state

Eutectic temperature (defined melting point)

- Bulking agent
- High eutectic temperature :
 - Elegant cake appearance
 - Fast drying
- In many cases no stabilization (e.g. for most proteins)
- Different morphologies dependent on excipient (Mannitol→ Annealing)
- Glass breakage (Mannitol at high fill)

Glas transition temperature

Characterization by differential scanning calorimetry

- Stabilzation of e.g. proteins
- Acceptable bulking agent at the same time
- Low M_w excipients: Low glass transition temperatures → Cake structure?
- High M_w excipients: Higher glass transition temperatures → poorer stabilization?

Examples

Kadcyla 100 / 160mg

20 mg/mL ado-trastuzumab emtansine 10 mM succinate pH 5.0 60 mg/mL D-Sucrose 0.02% Polysorbate

Herceptin 150 / 400 mg

21 mg/mL Trastuzumab 4 mM L-Histidine/-HCl, pH 6.0 20 mg/mL D-Trehalose 0.008 mg/mL Polysorbate 20

Primary packaging

Vial & Elastomer stoppers

Dual chamber Cartridge

Syringe (Dual chamber syringe)

Theory 2b

Dr. Julian Lenger

Scientific Laboratory Head in Drug Product Development at Bayer AG

julianh.lenger@gmail.com

PDA EU00144
Freeze-Drying in Practice
9 – 13 September 2024

Martin Christ
Osterode am Harz, Germany

Development of a lyophilization cycle: Practical advice

Where to find guidance?

Pretty good starting point:

Pharmaceutical Research, Vol. 21, No. 2, February 2004 (© 2004)

Review

Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice

Xiaolin (Charlie) Tang1 and Michael J. Pikal1,2

https://doi.org/10.1023/B:PHAM.0000016234.73023.75

Pharmaceutical Research (2023) 40:2433–2455 https://doi.org/10.1007/s11095-023-03607-9

ORIGINAL RESEARCH ARTICLE

Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update

Serguei Tchessalov¹ · Vito Maglio¹ · Petr Kazarin² · Alina Alexeenko² · Bakul Bhatnagar¹ · Ekneet Sahni³ · Evgenyi Shalaev⁴

How to approach it?

- Identify the maximum allowable/target product temperature during 1° drying
- Process design
 - Determine an adequate freezing procedure (annealing? Controlled nucleation?)
 - Ramps, equilibration steps, target freezing temperature, hold times
- 1°drying (simulation models or "paper-based")
 - Determine combination of chamber pressure and shelf temperature
 - Ramp
 - Drying time (isothermal hold)
 - PAT for endpoint determination
- 2° drying
 - Ramp
 - Target shelf temperature and isothermal hold time

Freezing – advice for process design

- Decide if thermal treatment (annealing or controlled ice nucleation) shall be implemented → Theory 9
- Define loading temperature (usually: room temperature)
- Define process:
 - Equilibration step: decide temperature (above eq. freezing point) + hold time (min. 30min)
 - Coolin ramp rate $(0.2 2 \, ^{\circ}\text{C/min}) \rightarrow$ for scalability reasons: $0.3 0.7 \, ^{\circ}\text{C/min}$
 - Target temperature: min. 5°C below Tg'
 - Hold time dependent on fill depth: ≤ 1cm: 1h, 1-2 cm: 2h, >2h: 4h

Based on: 1) "Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update." Tchessalov et al. Pharm Res 40, 2433–2455 (2023)., 2) "Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice". Tang, X., Pikal, M.J. Pharm Res 21, 191–200 (2004).

Primary Drying – advice for process design

- Determine the target product temperature (T_D): amorphous formulations
 - For drying times >2d: $T_{collapse}/T_{eutectic}$ minus 2°C
 - For drying times <10h: T_{collapse} minus 5°C
 - For drying times $10 \le t \le 2d$: T_{collapse} minus 3°C
 - Safety margin can also be calculated*
 - For (semi-)crystalline products: depending on equipment capabilities, a T_p of \sim -10°C to -15°C is recommended (dependent on T_{eu} of the crystalline solute)
- Next, either use a simple heat/mass transfer model like 1) <u>SP Scientific</u> <u>LyoCalculator</u> or 2) <u>LyoPRONTO</u> or determine p_{chamber} and T_{shelf} "by hand"
- Ramp rate typically: 0.5 1 °C/min; 1° drying time can be estimated²

^{*&}quot;Impact of natural variations in freeze-drying parameters on product temperature history: application of quasi steady-state heat and mass transfer and simple statistics." Pikal et al. AAPS PharmSciTech. 2018;19(7):2828–42.

Side note: Online calculators (heat/mass transfer simulations)

- SP Scientific LyoCalculator (based on Pikal et al. model)
 - Not officially available anymore, but still can be accessed <u>here:</u>
 - http://web.archive.org/web/20200924004836/http://www.spscientific.com/LyoCal c/Lyocalculator.html
- LyoPRONTO (Shivkumar et al.)
 - Open source, theoretical assumptions in journal article
 - <u>Tutorial</u> available as book chapter
 - extended features like freezing calc, primary drying calc, design space calc, primary drying optimizer, but needs more advanced knowledge
 - Can be accessed here: https://lyopronto.geddes.rcac.purdue.edu/

Primary Drying – shelf temperature estimation

Initial shelf temperature estimation:

$$T_c = -27^{\circ}C$$

 T_p 2-3°C below of T_c \rightarrow For instance $T_p = -30$ °C [A]

Setting of T(shelf) depends on product resistance and thus on total solid content (sc); Example: 11% solid content [B]

Readout is shelf temperature setpoint on y-axis: ~ -18 °C [C]

The total solid content defines the product resistance.

Reprinted from "Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice". Tang, X., Pikal, M.J. Pharm Res 21, 191–200 (2004). Copyright [2004] © Springer Nature.

Primary Drying - Chamber pressure (p_c) estimation

Chamber pressure > Vapor pressure of ice at sublimation interface

Chamber pressure < Vapor pressure of ice at sublimation interface

p_c: 500 mTorr (0.67 mbar)

p_c: 100 mTorr (0.13 mbar)

- Vapor pressure of ice at -30°C → 0.31 mbar = 290 mTorr
- Empiric equation: $P_c = 0.29 \cdot 10^{(0.019 \cdot T_p)}$

 p_c given in [Torr]; T_p = target product temp.

• For instance: $\mathbf{p_c}$ (Torr) = 0.29*10^(0.019*(-30)) = 0.078 Torr = **78 mTorr**

Vapor pressure of ice

Source: https://www.lyotechnology.com/assets/vpoi-chart-101915.pdf

Vapor Pressure of Ice

In contact with its own vapor

Temp	Va	por Pressu	ıre	Temp	Va	por Pressu	ıre
°C	Pa	µmHg	μbar	°C	Pa	μmHg	μbar
0	611.1	4584.4	6111	-42	10.22	76.6	102
-2	517.7	3883.6	5177 4374	-44	8.10	60.8	81
-4	437.4	3281.6		-46	6.39	48.0	64
-6	368.7	2765.9	3687	-48	5.03	37.7	50
-8	309.9	2325.1	3099	-50	3.94	29.5	39
-10	259.9	1949.4	2599	-52	3.07	23.0	31
-12	217.3	1630.0	2173	-54	2.38	17.9	24
-14	181.2	1359.1	1812	-56	1.84	13.8	18
-16	150.6	1130.1	1506	-58	1.41	10.6	14
-18	124.9	936.9	1249	-60	1.08	8.1	11
-20	103.2	774.4	1032	-62	0.82	6.2	8.2
-22	85.07	638.2	851	-64	0.62	4.7	6.2
-24	69.88	524.3	699	-66	0.47	3.5	4.7
-26	57.23	429.3	572	-68	0.35	2.6	3.5
-28	46.71	350.4	467	-70	0.26	2.0	2.6
-30	38.00	285.1	380	-72	0.19	1.5	1.9
-32	30.81	231.1	308	-74	0.14	1.1	1.4
-34	24.89	186.7	249	-76	0.10	0.8	1.0
-36	20.03	150.3	200	-78	0.08	0.6	0.8
-38	16.07	120.5	161	-80	0.05	0.4	0.5
-40	12.84	96.3	128	-82	0.04	0.3	0.4

mbar = 750.1 microns

1 micron = 0.1333 Pa

1 Pa = 7.5006 microns

1 mbar = 100 Pa

1 micron = 0.0013 mbar

1 Pa = 0.01 mbar

mbar (cgs units) = millibar (10 E3 dyns/cm sq) microns = micrometers of mercury Pa (SI units) = Pascals (N/m²) micron = µmHg = mTorr

Primary Drying – rough(!) drying time estimation

Limitation: This figure is assuming a 1-cm-thick frozen cake(!)

- For our example:
 - $-T_s = -18$ °C, $T_p = -30$ °C, total solid content: 11%
 - Calc. $T_s T_p =$ -18°C - (-30 °C) = **12** °C
 - Comparing the values with the graph yielding an roughly estimated drying time of ~20h for 1° drying

Simulations (assuming: 20R vial, 10 mL fill, 11% total solid content, Tp=-30°C, amorphous)

Simulations for "by hand" estimates:

 $Ts = -18 \, ^{\circ}C$ $p_c = 0.1 \text{ mbar}$

Simulations optimizing for $T_p = -30$ °C:

 $Ts = -14 \, ^{\circ}C$ $p_{c} = 0.07 \text{ mbar}$

Material Database

Secondary drying - advice for process design

- Define ramp and target shelf temperature; p_c not too important*
- Ramp is critical for preventing collapse (amorphous products)
 - 0.1 to 0.2 °C/min amorphous
 - 0.3 to 0.4 °C/min (semi-)crystalline
- Define isothermal hold at target shelf temperature
 - Often, 3-6h at 40-50 °C suffice to reach < 0.5% (w/w) RMC (see theory 2a, slide 19 for sucrose 5-15%)

^{*} Pc has almost no impact on drying rate, if kept below 0.267 mbar; for further details refer to: "The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure". Pikal et al. Int. J. Pharm. 60:3 (1990),

Development of cycles for practical work

Experimental overview

- 3 different lab freeze dryers are available for runs
- Five different model formulations will be prepared and freeze dried: Composition of formulations

#	Formulation	BSA	Excipient	Solid content	Buffer system	Surfactant	Ĩ ⁶ , \ Ĭ ^{6ñ}	Fill volume
1	Formulation 1	25 mg/mL	240 mM Sucrose	~105 mg/mL			~ -27	10 mL
2	Formulation 2/3	_	240 mM	~80 mg/mL	20 mM	0.02%	~ -32	10 mL
3			Sucrose		HisHCl pH	(w/v)		5 mL
4	Formulation 4	-	120 mM Sucrose	~40 mg/mL	6.0	Polysorbat 20	~ -32	10 mL
5	Formulation 5	-	220 mM Mannitol	~40 mg/mL			~-1	10 mL

 Suggestion: run three differently conservative/aggressive cycles to observe different process behaviors and product appearance

Available freeze dryer equipment

PAT	Epsilon 2-6D Lyo I	Epsilon 2-6D Lyo II	Epsilon2-4 Lyo III
Pirani	X	X	X
MKS	X	X	_
Comparative pressure measurement	XX	XX	-
PT100 (TC)			
WTM+ (wireless TC)	X	X	X
LyoRx	X	X	X
LyoCam	X	X	X
Controlled nucleation	X	-	-
Mass spectrometry	-	X	-
$\Delta T_p/\Delta T_s$	X	X	-

working sheet **Conservative**

Lyophilization Program

<u>Product assumptions</u>: $T_g' = -32$ °C; drying safely **below** T_g' ; 8% solute conc.

Regulation of vacuum:

Pirani

MKS Target T_p = -? °C

Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2°	Manual mode: stooper ing
Time (hh:mm)											
Shelf temp. (°C)	20										
Vacuum (mbar)	off	off	off	off	off						750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)		15	60	1	5	10	10	10	10	60	

working sheet **Regular**

Lyophilization Program

<u>Product assumptions</u>: $T_c = -30$ °C; drying around/slightly above T_c ;

Regulation of vacuum: Pirani MKS 8% solute conc.; Target T_p = -30 °C

_			<u> </u>									
	Process step	Manual mode: Loading (Pre-cooling)	Freezing	Freezing	Freezing	Freezing	1° drying	1° drying	1° drying	2° drying	2° drying	Manual mode: stooper ing
	Time (hh:mm)											
	Shelf temp. (°C)	20										
	Vacuum (mbar)	off	off	off	off	off						750
	Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
	Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
	Δ T product (°C)		off	off	off	off	off	off		off	off	
	LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
	camera interval (min)		15	60	1	5	10	10	10	10	60	

working sheet **Aggressive**

Lyophilization Program

<u>Product assumptions</u>: $T_g' = -27^{\circ}C$; drying **above** T_g' ; **8%** solute conc.

Regulation of vacuum:

Pirani

MKS large

Target $T_p = -?^{\circ}C$

Process step	Manual mode: Loading (Pre-cooling)				Freezing	1° drying	1° drying	1° drying	2° drying	2°	Manual mode: stooper ing
Time (hh:mm)											
Shelf temp. (°C)	20										
Vacuum (mbar)	off	off	off	off	off						750
Safety pressure (mbar)	off	off	off	off	off	0.26	0.26	0.26	0.26	0.26	
Δ T shelf (°C)		off	off	off	off	off	off	off	off	off	
Δ T product (°C)		off	off	off	off	off	off		off	off	
LyoControl Rx (%)		off	off	off	off	off	off	off	off	off	
camera interval (min)		15	60	1	5	10	10	10	10	60	

