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Introduction

Artificial intelligence (AI) continues to evolve and propel 
businesses forward; however, the Life Science industry’s 
adoption of these technologies is delayed in comparison with 
other industries. AI technologies have the ability to greatly 
reduce cost and time to market of products, especially when 
applied to and integrated with the process validation 
lifecycle. Due to the nature of the highly regulated industry, 
these technologies also introduce a number of challenges to 
the industry, particularly when it comes to validating these 
solutions. This presentation aims to demonstrate how 
developing AI solutions integrates with the process validation 
lifecycle, while demystifying some of the nuances around 
various AI solutions and terminology.

BW Design Group is a fully integrated AEC firm committed to helping our clients realize their most critical goals from Strategy to Commercialization™. We design and delivery complex life sciences facilities, including cGMP manufacturing, R&D laboratories, and biotech process spaces. With over 30 years of experience serving pharmaceutical and biotechnology clients, our subject matter experts bring deep technical knowledge in facility design optimization, 
regulatory compliance, and cutting-edge manufacturing technologies that enable successful commercialization of novel therapeutics.

Algorithm: set of rules 
or procedures for 
solving a problem or 
task; ex: PID2

vs.

Model: result of 
applying an algorithm 
to training data; 
performs predictions by 
utilizing learned 
patterns

AI: artificial 
intelligence; broader 
concept of machines 
simulating human 
intelligence2

vs.

ML: machine learning; 
subset of AI where 
systems learn patterns 
from data and make 
decisions without 
explicit programming2

vs.

GenAI: generative AI; 
type of AI that 
specializes in creating 
new, original content2; 
i.e. ChatGPT

What’s the Difference?

AI Solution Complexity Levels

Consider:
1. How autonomous is the system?𝟏

2. What is the likelihood of quality impact on the final product/substance?𝟏
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Incorporating AI into the Process Validation Lifecycle

The graphic below aims to demonstrate how the development and validation of an AI system aligns with the process validation lifecycle. In this example, the AI system is used for process optimization and continued process verification.

Identify intended use of system, data sources, algorithms, and 
integration with drug process.

Goal

• Define system requirements
• Select AI model and data sources
• Identify CPPs and CQAs to be monitored
• Develop initial models and train them 
• Perform initial exploratory analyses to evaluate accuracy 

and explore trends
• Specify acceptance criteria for model performance
• Perform risk analysis

Actions

• User Requirement Specification (URS)
• Functional Specification (FS) and Design Specification (DS)
• Data Integrity Plan
• Risk Assessment 
• Validation Master Plan

Documentation

Demonstrate AI system performs reliably under expected 
manufacturing conditions.

• Verify correct installation of system
• Confirm compliance with data integrity and cybersecurity 

requirements
• Test system in controlled environment
• Validate algorithm performance against predefined 

acceptance criteria
• Conduct stress testing
• Deploy AI system in production

Actions

• IQ/OQ/PQ
• SOP Development
• User acceptance testing
• Model Validation Reports
• Change control records
• Training records

Documentation

Goal

Ensure system remains accurate, reliable, and compliant.

Goal

• Monitor model performance with key performance 
metrics

• Compare model outputs to actual outcomes
• Periodic retraining of the model
• Perform re-validation when model is updated
• Investigate any failures of the model 
• Update risk assessments
• Conduct internal audits of the system
• Maintain records and change controls

Actions

• Continuous monitoring reports
• APQR
• Retraining and revalidation protocols/reports
• Risk assessment
• Change control records
• Incident investigations and CAPAs

Documentation

• Data collection from PAT and lab include temperature, 
pressure, mix speed, humidity, API concentration, 
potency, hardness

• Utilize AI model such as autoencoder to detect outliers, 
utilize explainable AI such as SHAP and LIME to determine 
most relevant factors

• Include data from development batches

System Development

• Challenge model with new data set during process 
qualification

• Manually check if detected outliers are true outliers
• Evaluate 21 CFR Part 11 compliance
• Challenge target metrics for reconstruction error of 

autoencoder (low for normal points, high for outliers)
• Refine precision, recall, F-1 score limits for model

System Validation

• In production: model alerts operator of any anomalies 
detected in real-time and indicates possible causes

• Retrain model every 6 months with updated data sets
• Investigate any false anomaly alerts and any missed 

anomalies
• Model automatically generates reports of its 

precision/recall and provides notification when they fall 
out of limits

System Deployment

Comparing Solutions for Stage 3 Validation (CPV)

How do advanced machine learning models compare to traditional CPV methods and 
multivariate statistics? Which option is the right solution for your process?

Autoencoder + SHAP/LIME3

• Type: AI/Machine Learning
• Strengths: 

• Detects non-linear trends and complex relationships in high 
dimensional data

• Minimal human intervention
• SHAP/LIME adds interpretability

• Cons: 
• Computationally intensive
• Requires larger data set for training and validation
• Requires additional validation due to black box AI components

• Best uses: Complex, non-linear anomaly detection

Multivariate Principal Component Analysis (PCA)
• Type: Multivariate statistics
• Strengths: 

• Well-established and easy to validate
• Effective in reducing dimensionality
• Helps identify correlated variables

• Cons: 
• Assumes linear relationships
• Cannot detect non-linear patterns
• Difficult to interpret principal components without linking to 

process variables
• Best uses: Identifying sources of process variability

Process Capability Analysis + Control Charting
• Type: Classic Statistics
• Strengths: 

• Simple and well understood
• Requires minimal computational resources
• Effectively detects large shifts in data

• Cons: 
• Cannot detect small or multivariate shifts
• Lacks predictive capability
• Does not adapt well to complex data

• Best uses: Simple process monitoring and quantifying capability

Figure 1: Process capability analysis for assay 
(%). Ppk = 0.77, Cpk = 0.79 

Figure 2: Control chart for assay (%) with one outlier on the Moving 
Range chart.

Figure 3: Feature importance plot for assay from Random Forest  Model indicating pH has 
greatest impact on pH.

Figure 4: Plot of actual assay values compared to assay values predicted by the Random 
Forest model on a test data set.
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This research utilized ChatGPT (OpenAI, 2025) through Microsoft Azure for 
language refinement and idea generation.

Statistical analysis was performed in Minitab Statistical Software 22.

Machine learning model execution and data generation was performed in Google 
Colab, utilizing Python libraries.
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Conclusion

AI enhances process understanding, anomaly detection, and 
continued process verification; increasing efficiency, reducing costs, 
and improving product quality. To ensure compliance and reliability, 
organizations must establish robust validation strategies, maintain 
data integrity, and address regulatory expectations. By leveraging 
explainable AI and aligning model validation with traditional 
principles, pharmaceutical manufacturers can confidently 
implement AI-driven solutions while maintaining compliance. It is 
important to recognize that advanced tech solutions are not always 
the answer. Moving forward, professionals must develop a risk-
based validation framework balancing innovation and compliance.

Process Optimization: Simulated Case Study

A simulated case study was executed using randomly generated datasets by Python. Variable process parameters include Temperature, pH, Mix Speed, and API Quantity. Target attributes are Purity and Assay.

Conclusions drawn from capability analysis and control charts:
• Normal distribution suggests stable process (Figure 1)
• Distribution is not centered around the target value indicating room for improvement (Figure 1)
• The low Ppk and Cpk values are a result of multiple data points very close to the lower specification 

limit.
• One outlier in the moving range chart indicates a large jump between two batches that may require 

additional investigation (Figure 2)
Next Steps:
• Design of experiments (DOE) with multiple development batches to determine what factors are 

impacting assay and adjust process as necessary to achieve results closer to target. 

A random forest machine learning model was trained on an initial data set of 50 values and then evaluated on a different test data set to see if it can predict 
assay and purity from the four (4) parameters: temperature, pH, mix speed, and API quantity. Execution occurred in Python (Google Colab). 
Results of model:
• Assay: Mean squared error = 0.06, R² score = 0.85
• Purity: Mean squared error = 0.00, R² score = 0.85
• Figure 4 demonstrates the accuracy of the model for assay. Predictive capabilities are shown to weaken at the extremes of the data pool indicating that 

additional data points at the high and low end may help improve performance of the model. 
• Figure 3 indicates that pH has the greatest impact on assay (%)
Next Steps:
• Focus on optimizing pH levels to meet the target assay value, rather than varying all 4 variables and executing a full DOE.
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