Application of Modeling as a Tool for Early Derisking of Parenteral Delivery, from the Primary Container to the Tissue
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A trend to larger volumes and viscosities Modeling to enable faster time-to-market
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containing different charged species is injected into an electrically-charged, porous, viscoelastic matrix and absorbed by blood and

lymph vessels (Fig. 3). Accounting for these multiphysics couplings in a thermodynamically-consistent framework is a challenge by The application of the governing laws of fluid mechanics and ~ When the fluid path is made of deformable components, its
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In silico modeling of subcutaneous injections can be |€V€FOg€d ear|y in development, pl’iOI’ to pre-clinical studies, to reduce testing burden and predict 1] Mathias, N. et. al. (2024). “Towards more tolerable subcutaneous administration: Review of contributing factors for improving combination product design”. Advanced Drug Delivery Reviews.
2] Woodley, W.D. et al. (2021). “Clinical Evaluation of Large Volume Subcutaneous Injection Tissue Effects, Pain, and Acceptability in Healthy Adults”. Clinical and Translational Science.
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itself. The governing equations of the coupled problem are written by strictly applying the basic principles of nonequilibrium g " NeVYtOﬂIlej eqwllbnum allows for accurate modgllng of ﬂgw ina , transient deformation is modeled during the injection (Fig. 8).
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(a) Axisymmetric infinite medium. (b) Without chemo-mechanical coupling: an injection pressure is applied. (c) With chemo-mechanical couplings:
same injection pressure, one salt (NaCl), fixed charges, absorption. In this case, the applied pressure cannot overcome the osmotic pressure.
Omitting the chemo-mechanical couplings in the modeling could lead to predicting a biased tissue response (e.qg. swelling vs shrinking).
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injectate volumes and viscosities. 5] Gil, L. et al. (2024). “The Importance of a Full Chemo-Poro-Mechanical Coupling for the Modeling of Subcutaneous Injections”. Journal of the Mechanics and Physics of Solids.
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