Navigating Packaging Challenges for Drugs and Injection Devices

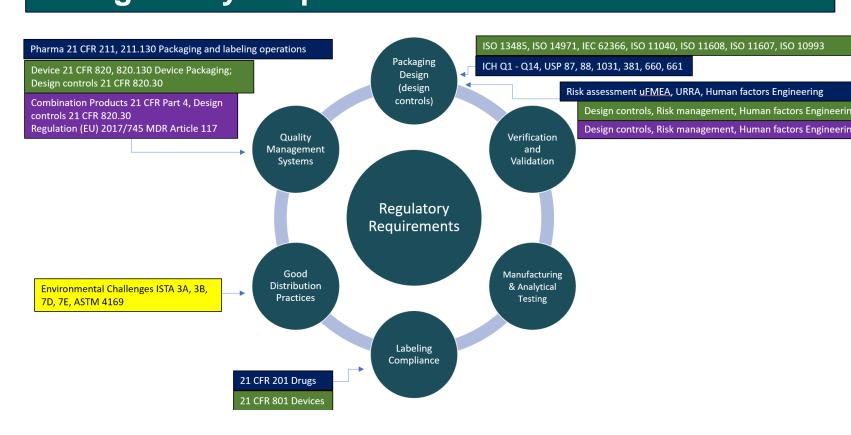
Ling Lu, Lavanya Uppugonduri **Bristol Myers Squibb**

Universe of PFS & Injection Devices Conference 2024, 22-23 October Phoenix, AZ

Overview

- Packaging roles
- 2. Regulatory requirements
- Regulatory challenges
 - 1) Design controls for combination products
 - 2) Minimizing medication errors
 - 3) New packaging technologies

1. Role of Packaging



- Integrity, Sterile barrier system, Tamper evident
- Stability & shelf life (degradation light, temperature, humidity, oxygen, vacuum, device functionality)
- Contamination, Mix-ups
- Safety User experience
- Compliance, Instructions for use

Marketing

- Dress up the products for shelves to differentiate from others
- Communicating messages Building a brand narrative

2. Regulatory Requirements

3.1 Challenges – Design Controls for Combination **Products**

FDA Guidance CGMP Requirements for Combination Products (01/2017) Design controls and Risk management for Prefilled syringe packaging

Design Input/User Needs	Design Output
Required minimum/maximum dose delivery	Drawing/specification for syringe dimensions,
for drug	markings, etc.
Drug viscosity and desired/required delivery	Drawing/specification for needle bore, glide
rate	force, etc.
Expected use condition (e.g., expected user	Content and reading level for the prefilled
experience/education level)	syringe's labeling
Maximum and minimum allowable	Packaging/labeling specifications for the
temperature for prefilled syringe	prefilled syringe
Risk	Mitigation
Syringe filled with incorrect drug dose	In-process acceptance testing, process validation
Loss of sterility	Container-closure integrity testing, packaging
_	validation/testing

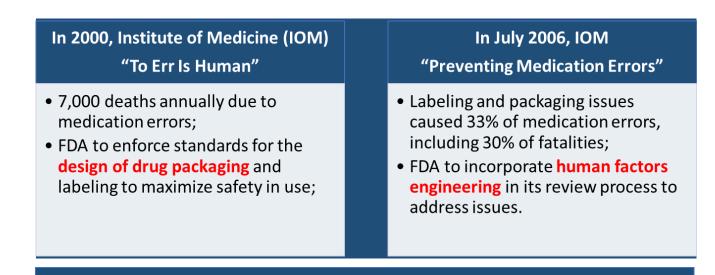
3.1.1 Documentation Requirements

Drug User Interface Design	Design Controls for Combination Products including Packaging	
Project Plan	Design & Development Plan	
Drug, Pkg, Lblg, Users, Use cases, Use steps, Task analysis, Regulation, Standards	Design Input: (User needs, User requirements, SN, Standards, FDA Guidance)	
Risk Assessment (prior knowledge, use FMEA, URRA)	Risk management (ISO 14971, Hazard Analysis, design, use, process FMEA), URRA	
Packaging, labeling specs	Design Output: packaging specification, label spec, IFU	
Development project Go/No Go	Design Review: review report	
Usability testing, Formative Human Factor Study	Design Verification: Supplier data, document review, risk analysis, DV testing;	
Human Factor Summative	Design Validation: Human Factor study, risk analysis, clinical evaluation;	
Technology Transfer, Control Strategy	Design Transfer: from design to production specification, Control Strategy	
Change controls (LCM)	Design Change: device constituent parts including packaging	
Drug Project File + CMC + Labeling	Design History File + CMC + packaging & labeling	

3.1.2 Example - Packaging Design Controls

User Needs	Design Input	Design Output	Design Verification	Design Validation	CMA CPP	Control Strategy
Device shall function after shipping	Packaging shall protect product	Pkg Drawing Spec	ISO 11608, ISTA Ship test	HFS	СМА СРР	IC, RT, ST
Label shall be intact and legible	Label presence and Legible	Label Spec	Adhesion and Rub test	HFS	CMA ICP CPP	IC, IPC, RT, ST
Enable self-injection	Easy to open carton & remove product from pkg	Pkg spec, drawing	Lab test	HFS	СМА	IC

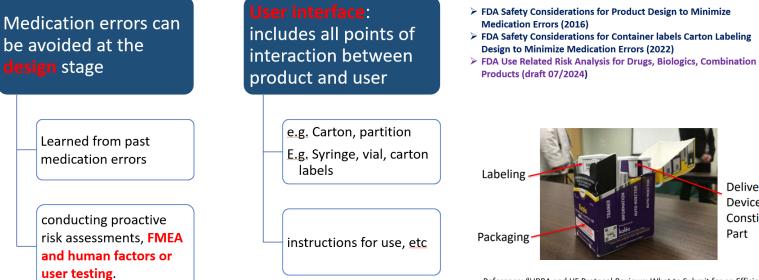
Control Strategy: IC =Incoming Control, IPC= In-Process Control, RT = release test, ST = stability test CMA = critical material attribute, CPP = critical process parameter, HFS = Human Factors study


3.1.3 Example - Packaging Risk Analysis

Hazard (FM)	Potential Cause	HS (Potential Failure Effect)	Harm	Risk Control
Pkg & product	Carton material not	Missed dose,	Lack of therapeutic benefit,	Pkg spec,
damaged during	strong enough to protect	Delay in therapy,	persistent lack, Infection	IC
shipping	product from shipping	Loss of Sterility		
Product falls from	Partition design not able	Missed dose,	Lack of therapeutic benefit,	Pkg spec,
partition cavity	to secure product	Delay in therapy	persistent lack	IC
Device cap removed	Carton design allows	Missed dose,	Lack of therapeutic benefit,	Pkg spec,
from shipping	components to move	Delay in therapy	persistent lack	IC, IFU
	inside pkg			

Note: FM = failure mode, HS = hazard situation, Pkg = packaging, spec = specification, drawing; Risk Control Strategy: IC = Incoming Control, IPC= In-Process Control, RT = release test, ST = stability test, IFU = Instructions for use

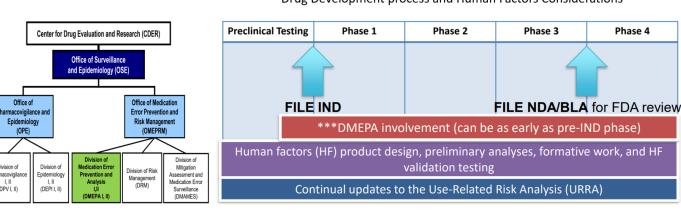
Hazard (Use Error)	Potential Cause	HS (Potential Failure Effect)	Harm	Risk Control
Product dropped, damaged, not able to inject	User unable to remove product from pkg, damaged carton	Partial or missed dose, Delay in therapy	Lack of therapeutic benefit	Pkg design spec; IFU instructs user to properly remove product from pkg
Closure integrity Needle cover removed	User forgets the sequence	Loss of sterility, Contaminant exposure, Dried drug clogged needle	Local infection, Allergic reaction, Lack of therapeutic benefit	IFU instructs user to not remove needle cover until ready to inject


3.2 Challenge – Minimizing Medication Errors

Examples of known problems and medication errors due to design

- Product Strength:
- Miscalculations or forgetting how many units have already been administered
- > Fail to dilute, dilute incorrectly, wrong diluent or an incorrect amount of diluent
- ➤ Oral/topical drug products packaged in vial containers led to IV administration;
- Prefilled syringe led to IV push rather than IV infusion.

3.2.1 Applying Human Factors and Usability Engineering

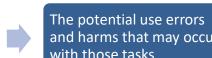

Review" Lolita Sterrett, PharmD, Division of Medication Error Prevention and Analysis II, Office of Medication Error Prevention and Risk Management Office of Surveillance and Epidemiology CDER, US FDA SBIA's Regulatory Education for Industry (REdI) 2023 – June 6, 2023

3.2.2 Use Related Risk Analysis & Human Factor Engineering

A risk analysis tool

- Identifies use-related hazards associated with product use and the measures
- implemented to reduce those risks;
- supports the entire Human Factor engineering (HFE) process; considered as part of an overall risk management framework

Drug Development process and Human Factors Considerations



3.2.3 Example – Use Related Risk Analysis

The Use-Related Risk

he product

Analysis (URRA) should

rith those tasks

Evaluation methods that have been used (or will be used) to the risk controls.

whether each task is a

Task #	Use Task	Potential use error	Potential Hazard Harm Severity	Critical task	Risk mitigation measure for each use error	Evaluation method
1	Choose full dose	User takes only one vial instead of two	Full dose not delivered, underdose	y/n	IFU describes dose amount per vial on carton/vial labels	HF studies observe users, inform and optimize design of labels, confirm users can read and follow IFU
2	Prepare full dose	User forgets to dilute because the drug is already in solution	Patient receives overdose, inadvertent AE	y/n	IFU differentiates the labels between drug solution and diluent	Formative and summative HF study to observe and confirm users can read IFU and follow the process in IFU
3	Deliver dose	Nurse injects the SC drug as IV push	Patient gets overdose, inadvertent AE	y/n	Ensure clarification on syringe label for SC dose, IFU includes a picture to show SC site(s), and warning for SC delivery	HF study to observe and confirm users to inject to SC sites

The table headline is coped from Appendix URRA Table – Example format in FDA Use-Related Risk Analysis for Drugs, Biologics, Combination

Note: SC = subcutaneous, IV = intravenous, AE = adverse effect, IFU = instructions for use, HF = Human Factors

3.3.1 Regulatory Evolution

FDA Guidance Glass Syringe (04/2013), Injectors (06/2013)	FDA Guidance Safety Considerations for Product Design to Minimize Medication Errors (4/2016)	FDA Guidance Postmarketing Safety Reporting for Combination Products (01/2018)	FDA Guidance Application of Human Factors Engineering Principles for Combination Products: Q&A (9/2023)	FDA Use-Relate Risk Analysis fo Drugs, Biologic Combination Products (draft 07/2024)
---	--	--	---	---

> 2016 > 2017 > 2018 > 2022

FDA Guidance Container Closure Systems for **Packaging Human** Drugs and Biologics (07/1999)

FDA Guidance FDA Guidance **Applying Human** CGMP Factors & Requirements Usability for Combination **Engineering to** Products Medical Devices (01/2017) (02/2016)

FDA Safety Considerations for **Container Labels and** Carton Labeling **Design to Minimize Medication Errors** (05/2022)

MAHs of medicinal products and notified bodies with respect to the implementation of the Regulations on medical devices and IVDs (Regulations (EU) 2017/745 and (EU) 2017/746) (v.4 05/2024)

3.3.2 New Packaging Technologies and Beyond

Packaging with novative deliv

nique packaging for personaliz medicine

ackaging for lov

New Regulation and Guidance

Reference: "URRA and HF Protocol Reviews: What to Submit for an Efficient Review" Lolita Sterrett, PharmD, Division of Medication Error Prevention and Analysis II, Office of Medication Error Prevention and Risk Management Office of Surveillance and Epidemiology CDER, US FDA SBIA's Regulatory Education for Industry (REdI) 2023 – June 6, 2023