Cleansolutions L A B O R A T O R I E S

Particle Control For Cell Therapy Products

Executive Summary

Health authority inspection focus

> Agencies started to enforce VI and particle guidelines for CGT products

Challenges for particle control

> Manual manufacturing process, no sterile filtration, single use components with high particle load, unconventional container closure systems, impaired analytical methods because of cell therapy product characteristics

Solution to the challenge

Holistic particle control strategy, process simulations, use of cell strainers, adequate container closure systems, product specific analytical methods

Background

From R&D to larger scale commercialization

 \succ Cell therapies remain a fairly new pharmaceutical modality with CMC processes derived from R&D labs, the pharmaceutical ecosystem currently adopts to the new needs of a scaling cell therapy market

Health authority paradigm shift

- > Cell therapies were frequently granted waivers for particle control
- Recent FDA warning letters and IND/BLA holds indicate a shift in
- regulatory expectations, with HA's prioritizing robust particle control

*CONTACT: roman.mathaes@clearsolutions-labs.com

Roman Mathaes^{1,} Filip Fedorowicz¹, Andreas Zerr¹, Atanas Koulov¹

Five Challenges

Manufacturing process

- Low degree of automation with manual operations
- Often in a safety workbench, no isolator containments

Purification process

- No sterile filtration process (cells cannot pass a 0.22 µm filter)
- Only cell strainers are available for particle reduction

Single use manufacturing components

- SUS components adopted from R&D labs
- Focus on ensuring sterility, not optimized for low particle shedding

Container closure systems

- Unconventional primary packaging (e.g. polymer I.V. bags)
- High particle load / particle shedding upon mechanical stress/freezing

Analytical methodologies

- Product characteristics strongly impact performance of the conventional visual inspection methodologies
- Primary packaging (e.g. bags) challenging to inspect with conventional VI instrumentation and pharmacopoeial VI inspection procedures

Solution to the Challenge

Holistic particle control strategy

Process simulations / operational excellence

Implementation of cell strainers

Container closure systems

Analytical methodologies

- intensity, etc..)

Scan and request the "Particle Control For Cell Therapies" white paper —

 QRM based on product and process knowhow • Controlling all stages of the particle lifecycle

• Particle characterization studies using e.g. water runs/ media fills • Eliminating sources introducing particles into the product/ process

• Optimize the use of cell strainers beyond reduction of cell clumps • Systematic assessment of cell flow vs particle retention

• Use of traditional primary packaging e.g. glass vials, polymer vials • Control strategy for primary packaging components e.g. pre-inspection, components with reduced particle shedding, etc.

• Validate a product specific visual inspection method beyond pharmacopoeial procedures (instrumentation, inspection time, light

• Product specific VI test sets for VI operator training / qualification • Consider supplemental destructive testing when appropriate

Particle Control

