

Leveraging Prefabricated Solutions to Reduce Risk

Peter Makowenskyj pmak@gconbio.com

02 MAY | St Louis #PDA

BUILDING FOR LIFE

Agenda

- What are Prefabricated Solutions
 - How do the differ from alternate solutions
- Quality
 - Cost vs Schedule vs Quality
 - Center of Excellence
- Design Improvements
- Decon Case Study

What's the Main Difference to the Traditional Built?

IT'S TIME TO SIMPLIFY CLEANROOM PURCHASES

Facility Needs Voiced

• Delivery time and budget proposals for facilities and cleanrooms require to be robust

Going into a new project with a well planned budget

6 months into your build with very little progress and no money left

Industry Needs

Requirements for New Facilities

Impact of Center of Excellence

Pre-Fab Solutions- Reliable Speed

The Current Experiences in Design/Build Improvements

Experiences from the Aging Facility Task Force

- Living in the legacy mode \rightarrow change averse, fear for the unknown, we * have always done it that way
- Financial misconceptions \rightarrow lack of total cost ownership analysis **
- Let's wait \rightarrow rather be a fast second than a leader **
- Risk of change \rightarrow do regulatory authorities accept it, is it supported * by management

Stainless steel surfaces

Equipment Design Evolution

From large scale stainless steel to medium volume single-use to entire single-use process assemblies

- ✓ Higher cell densities and expression rates allowed to utilize lower bioreactor volumes
- The lower volumes and process intensification resulted in the adoption of single-use process technologies (it though took 20 years !)
- Single-use process technologies can be designed as presterilized closed systems and do not require lengthy set-up and cleaning times
- The process equipment designs are still evolving as new therapies (C/GT) enter the clinical and approval phases. The currently manual processes require a high level of automation and controls

Equipment Design Evolution, cont.

From high human intervention filling to isolator/RABS to isobots

Highest

Human Interventions

None

- Humans are a key contributor of microbial contaminations, therefore keeping the operator out of the critical area is desirable
- ✓ Isolator technology represents a great improvement, but still does not meet an optimal solution
- Isobots, contained human less environments, which utilize robotic technologies have been part of the highly critical semiconductor industry for years
- This technology started entering with robotic filling systems and move away from vials/min to output/year

Facility Design Improvements

From on-site to off-site, from putting bits and pieces put together to a prequalified, high containment units

- ✓ Off-site, prefabrication eliminates facility disruptions and break-down (no dust/construction contaminants)
- There are typically no mezzanine levels and convoluted duct systems needed, as the air handling and duct work is compact built within the technical area and plenum section
- ✓ The materials and installation used do not allow or minimize microbial contamination
- Individual areas can be shut-down and isolated in case of an excursion, sanitized without interrupting other cleanroom areas (autonomous cleanroom unit operations)

Integration of Decon

- Typically considered for BSL 2+ applications.
- Options to consider
 - VHP vs iHP vs ClO2
 - Integrated Piping vs Integrated HVAC vs Roll In Units

Evaluation of Decon Strategy

Enclosure	Volume m ³	VHP concentration	Injection	Cycle time
		ppm	time min.	hours
Pass through	~1	600-1,800	10-30	0.25-1
Small isolator	~2	600-900	30-60	2-12
Small room	~30	400-700	30-60	2-12
Large room	~200	200-500	90	4-12
Very large room	200-800	200-400	120-240	5-12

Zone Volume (10' Ceilings): Zone 1: 16,330 ft3 Zone 2: 12,320 ft3 Zone 3: 11,410 ft3 Zone 4: 2,290 ft3 Zone 5: TBD ft3

Evaluating the Options

Decision Parameter	Portable	Integrated – HVAC Not Viable Due to Single-Pass HVAC	Integrated - Piped
Recommended Frequency of Use	Low (1x per month)	High (2-4x per month)	High (2-4x per month)
Initial Planning	Moderate	Detailed (Integration with HVAC components)	Detailed (Integration with HVAC components)
Initial Cost	\$	\$\$	\$\$\$
Operating Cost	\$\$\$	\$	\$
Process Validation	Difficult (Manual Setup)	Easier (Fully Automated)	Easier (Fully Automated)
Operational Flexibility	High - Units can be moved between rooms and buildings	Moderate - More upfront planning	Moderate - More upfront planning
Cycle Time	2-4x longer than Integrated	Rapid (7-16 hrs for 20k ft ³)	Rapid (7-16 hrs for 20k ft ³)
Room Size Capacity	Up to 20,000 ft^3	Up to 40,000 ft^3	Up to 40,000 ft^3
Estimated Equipment Cost	\$148,088 (Two Portable Units and Fans)	\$350,000	\$800,000 (Includes Piping)
Operator Safety	Moderate - Relying on SOP's	High - System can communicate with door interlocks	High - System can communicate with door interlocks

DECISION PARAMETER	MOBILE VHP SYSTEM	INTEGRATED – PIPED VHP SYSTEM	INTEGRATED – HVAC
Recommended Frequency of Use	Low (1x per month)	High (2-4x per month)	High (2-4x per month)
Initial Planning	Moderate	Detailed (Integration with HVAC components)	Detailed (Integration with HVAC components)
Initial Cost	\$	\$\$	\$\$\$
Operating Cost	\$\$\$	\$	\$
Process Validation	Difficult (Manual Setup)	Easier (Fully Automated)	Easier (Fully Automated)
Operational Flexibility	High - Units can be moved between rooms and buildings	Moderate - More upfront planning	Moderate - More upfront planning
Operator Safety	Moderate - Relying on SOP's	High - System can communicate with door interlocks	High - System can communicate with door interlocks
Estimated Cost Variance	\$ (-)*	~ \$ 1,500,000	~ \$ 3,500,000

OPTIONAL ADDERS	UNIT COST	
Hermetically Sealed Doors	\$ 16,000 per leaf	

1

-

Agile Manufacturing – Enhancing Flexibility and Scalability

• Capacity increase and scalability without interrupting existing processes

••(

Conclusions

- Prefabricated Solutions provide a means to securing project drivers while maintaining a high level of quality.
- Execution strategy of pre-fab solutions allows for a higher level of integration with advanced manufacturing solutions.
- By nature, low end solutions such as gypsum board, are incompatible with pre-fab solutions
- Supports shut down or removal of non-compliant areas as well as facilitating an agile manufacturing network