Ethylene Oxide and Radiation Sterilisation

Method Selection and Critical Success Factors

Barry Cox Steritech Pty

Main Sterilization Technologies

Ethylene Oxide (55%)

- Surface sterilant
- Typically 100%
- Sterilize under vacuum
- Process variables include
 - ✓ Temperature
 - ✓ RH
 - ✓ Time
 - ✓ Pressure
 - ✓ EO concentration
- Preconditioning / Aeration

Irradiation (45%)

- Penetrative sterilant
- Gamma
 - ✓ Cobalt 60
 - ✓ Alpha particles
 - ✓ High penetration
- Electron Beam
 - ✓ Accelerated electrons
 - ✓ Beta particles
 - Processing speed dependant on power (Kwatts)
 - Penetration dependant on energy / particle speed (MeV)

Steritech: A World Leader in Sterilisation and Decontamination Technology

Criteria to Consider

✓ Material Compatibility

✓ Packaging

Validation ✓ Initial validation ✓ Cross Plant / Cross Line ✓ Regualification / Maintenance **Product / Materials** ✓ Electronic Components

Operations / Logistics

- ✓ Speed to market
- ✓ Processing Cost
- ✓ Turnaround Time
- ✓ Product Release
- ✓ Processing Risks
- ✓ Capacity Management
- ✓ Residuals

Health, Safety & Environmental

Steritech: A World Leader in Sterilisation and Decontamination Technology

Initial Validation

Ethylene Oxide

- Set out in ISO11135
- Typically takes 8-12 weeks
- Protocol needs to take into consideration
 - ✓ Load configuration
 - ✓ Placement of internal BI's
 - ✓ EO residuals
 - ✓ Product functionality
 - ✓ Number of samples
- Changes to product / load configuration

- Set out ISO11137
 - ✓ VD_{max}^{15 / 25} most common
 - Small # of samples required
 - ✓ Methods 1 & 2
 - Larger # of samples required
- Detail on Bioburden
- Typically can be carried out in 3-4 weeks
 - Test of sterility incubation time of 14 days
- Ebeam needs to factor in scatter

Cross Line / Plant Requirements

Ethylene Oxide

- Within same plant need to evaluate process equivalence and may be able to justify reduced validation activity.
 - ✓ Capacity
 - ✓ Load Configuration
 - ✓ Equipment Capability
- With different plant, equivalence often difficult to establish and therefore requires full validation.

- Gamma \rightarrow Gamma
 - ✓ Dosimetric Only
- Gamma \rightarrow Ebeam
 - ✓ Dosimetric
 - ✓ Microbiological
- Ebeam→ Ebeam (Similar Operating Mode)
 - ✓ Dosimetric Only
- Ebeam→ Ebeam (Different Operating Mode)
 - ✓ Dosimetric
 - ✓ Microbiological

Maintenance / Requalification

Ethylene Oxide

- Generally re-qualified every 1-2 years
- Review of
 - Process history
 - Product / packaging changes
 - Equipment changes

- Quarterly dose audits
- Control of routine Bioburden
- Product / packaging changes quicker to qualify
- Changes in orientation

New Product Speed to Market

Ethylene Oxide

- Long validation lead time
- Complex validation
- Extra validation activity to accommodate scale up.

- Quicker validation
- Smaller # of samples for validation
- Product for clinical trials
- Scalable from product development

Processing Cost

Ethylene Oxide

- By Chamber (e.g. 10 Pallets)
- Cycle price dictated by cycle length
- Expensive for small volume loads
- Extra costs may include
 - ✓ Extra aeration
 - ✓ Bl's
 - ✓ Other testing
- Factor in WIP cost due to longer lead times

- By pallet / Carrier / tote or box
 - Easier to manage unit costs
 - Optimize batch size to reduce dosimetry
- Processing cost dictated by density of product
- Factor in lower WIP due to faster lead times

Processing Time

Ethylene Oxide

- Typically 7-10 days
 - ✓ Processing : 20-48 hours
 - ✓ BI testing : 2 7 days
 - ✓ Aeration : 0-5 days
 - ✓ Some products may require post sterilization processing
- Parametric Release may shorten turnaround time by elimination of BI's
- Long turnaround times result in increased WIP

- Typically 2-3 days
 - ✓ No BI's to test
 - ✓ No Aeration requirements
 - Minimal requirement for post sterilisation processing
- Can be as quick as < 24 hours
- Ebeam
 - Tote or box to box so can be even quicker than gamma
- Quick turnaround time result in less WIP

Product Release

Ethylene Oxide

- Up to 7 days
- Review of Batch record
 - ✓ Cycle parameters within specification
 - ✓ BI results
 - ✓ Aeration Complete
- Parametric release an option for quicker release

- 1-2 days
- Dosimeters
- Certificate of Processing
- Quality review and approval

Processing Risk

Ethylene Oxide

- Batch Process 1-32 pallets
- Multiple parameters to be controlled and monitored
- Multiple sterilization capability recommended
- Only option is to reprocess or scrap

- Gamma
 - ✓ Pallet / Carrier / tote
- Ebeam,
 - ✓ Tote / box to box
 - ✓ Product orientation
 - ✓ Incremental dose
- Dose is cumulative
- Dose augmentation
- Load presentation
 - ✓ Critical for Ebeam

Capacity Management

Ethylene Oxide

- Lengthy process to add capacity
 - ✓ Equipment lead time
 - ✓ Commissioning
 - ✓ PQ
- Typically 12 18 months
- High capital cost

- Quicker lead time to increase capacity
- Gamma
 - ✓ Increase cobalt source
 - ✓ Run on extra shifts
- Ebeam
 - \checkmark Increase power \rightarrow Speed up conveyor
 - ✓ Run extra shifts

Residuals

Ethylene Oxide

- EO & ECH levels on product must meet limits set out in ISO10993-7.
- Can result in increased processing time to get limits below required limits
- Influenced by
 - ✓ Aeration temperature
 - ✓ Materials
 - ✓ Product design
 - ✓ Layers of packaging

- No known residual issues with irradiation of medical devices
- Irradiation does not have high enough energy to impart radioactivity

Product / Material Compatibility

Ethylene Oxide

- Product design
 - ✓ Tortuous pathway
 - ✓ Dead legs
 - ✓ Coatings
- Most materials compatible
- May be issue where product is temperature / RH sensitive
- EO / ECH residuals

- Cross linkage
- Discolouration
- Reduced with Ebeam
 - ✓ Shorter exposure
 - ✓ Incremental dose
 - ✓ Reduced oxidization effects
- Additives to reduce impact of irradiation

Packaging

Ethylene Oxide

- Porous to EO
- May need post sterilization activity of product is RH sensitive
- Packaging validation needs to take pressure changes into consideration.
- Ideally need to minimize layers to facilitate EO penetration

- Can use non-permeable materials
 - ✓ Foil pouches
 - ✓ No pressure change implications
 - ✓ No temperature / RH restrictions
 - ✓ Potential for cheaper packaging
- Reduced need for post processing packaging
- Most materials suitable for Ebeam
- Unsuitable materials for Gamma
 - **×** Standard polypropylene Brittle
 - ► UPVC Discolouration / Brittle

Electrical Components

Ethylene Oxide

- Increased risk of source of ignition
- Cycle can be designed outside flammable zone
- May result in longer cycle leading to higher processing costs

- Devices incorporating passive components may tolerate irradiation
- Some electronic components susceptible to irradiation
- Damage is gradual rather than sudden

Health & Safety / Environmental

Ethylene Oxide

- Hazardous Gas
- Occupational exposure
- Facility design
 - ✓ Atex
 - ✓ Fail Safe
- Emission Control

- Radiological shielding
- Occupational exposure
- Production of small amount of Ozone
- Transportation & control of Cobalt
- Ebeam can be quickly shut down
- Does not impart radioactivity
- No known residuals

Conclusions

- Irradiation offers significant advantages over Ethylene Oxide
- There are limitations with irradiation, but there are strategies to minimise these.
- Electron Beam offers the advantages of Gamma but with fewer of the limitations.

Questions to Ask Yourself

- Am I using the most suitable sterilization method for my product ?
 - ✓ Was it selected based on availability at the time ?
 - ✓ Are there other materials that would be irradiation compatible ?
 - Has anything changed to make my product capable of using an alternative sterilization method ?
- Can I change to a different sterilization method ?
 - ✓ Is my product compatible ?
 - ✓ What are the regulatory requirements ?
 - ✓ How long will it take ?
 - ✓ Will it be worth the while Financially and operationally ?
- Am I considering the sterilization method early enough in the product design phase ?

Steritech: A World Leader in Sterilisation and Decontamination Technology

Thank-you for listening.

Any questions?

1.

