

SIGNIFICANTES AVANÇOS TECNOLÓGICOS QUE POSSIBILITAM A INTEGRAÇÃO DE BIOPROCESSOS CONTÍNUOS

Farm. Juan M. Centeno Crowley

Scientific & Laboratory Services Pall Biopharmaceuticals

Juan M. Centeno Crowley Farmacêutico (Universidad de Buenos Aires)

- Pall Biopharmaceutical (Actual): Scientific & Laboratory Services. Senior Technical Support. Project management, upstream/downstream filtration scale-up (Direct Flow Filtration, Tangential Flow Filtration, Chromatography, process validation/support, and product technology transfer).
- GemaBiotech (2006-2011): Provide molecular biology support to develop new strategies for cloning and expression of recombinant target proteins in mammalian and bacterial systems. Downstream process.
- Instituto Fundación Leloir (1999-2006): Research project entitled "Interaction mechanism of the antibodies binding with its DNA target". I investigated the molecular basis of this interaction, using spectroscopic and biophysical methods to generate and integrate the structural data with a mechanistic analysis.

Vision for Continuous Bioprocessing

Leading provider of integrated platform technologies for continuous manufacturing of biologics

• Platform

Robust across multiple molecules (>75%) at multiple scales from PD > Clinical > Commercial Manufacturing

Ability to complete process development within four weeks

High overall yield (65%)

Meets/Exceeds purity requirements

Post Chrom: HCP < 10 ppm and Aggr. <1%</p>

Factory of the Future: What does Continuous Processing enable?

Attributes for Next Gen Facilities

- Flexibility
- Designed for smaller batch sizes/ runs
- Quality built in to process
- Real time release
- Localization/in country
- Fundamental Components Required
 - Single Use Technology
 - Connected Continuous Downstream Production
 - Modularity in facility design for implementation
 - Possible connection of Upstream and Downstream
 - In-line and at-line analytics

Critical Skills for Building the Factory of the Future

System design expertise

Leading edge application understanding for ALL unit operations

Full understanding of regulatory requirements

Chromatography

& Membranes

Lean Thinking: From Batch to Continuous

Eight Wastes in Production

Defects Overproduction Non-Utilized Talent Motion

Lean

Transportation Waiting Inventory Extra Processing

"One Piece Flow"

Goal: Higher quality and productivity in a smaller foot print with shorter lead times

Integrated Continuous Bioprocessing

Fed Batch USP + Batch DSP

Fed Batch USP + Continuous DSP

The Journey from Batch to Continuous Bioprocessing

Batch Bioprocess

Vedia Fed-batch Cell Culture		Clarification	Clarification Chromatography		Filtration	Final Product	
••	• • • •	•••	Capture Interm.	Polish.			
Process step		Time in F	Process				
Media	Prep						
Fed-ba	atch Cell Cult.						
Clarific	ation						
Chrom	atography						
Filtratio	on						
 Connectina	People. Science and Regulat	ion®					

The Journey from Batch to Continuous Bioprocessing

Continuous Bioprocess

Continuous Conti	nuous Continuous	Continuous	Continuous
Process Step	Time in Process		
Media Prep			
Perfusion Culture			
Chromatography			
Filtration			

The Journey from Batch to Continuous Bioprocessing

Hybrid Batch/Continuous Bioprocess

FDA on Continuous Processing

Janet Woodcock, CDER, FDA, "Modernizing Pharmaceutical Manufactruing – Continuous Manufacturing as a Key Enabler", p 33, MIT-CMAC International Symposium on Continuous Manufacturing of Pharmaceuticals, May 2014

Continuous and Single-Use

Continuous Technologies:

- Driven by volume instead of product amount
- More compact process equipment
- Eliminates interstage tanking

Disposable Technologies:

- Increased flexibility
- Fast turn around time
- Risk reduction

Enabling Technologies for Continuous Processing

In-Line Concentration (ILC)

Single Pass TFF Protein Concentration

Acoustic Wave Separator

Acoustic Wave Separation

Acoustic Separator Perfusion Cell Culture

Fully disposable

Enabling Technologies for Continuous Processing

In-Line Concentration (ILC)

Single Pass TFF Protein Concentration

Process Development System

BioSMB: Patented Valve Technology

- Integrated Valve Cassette
 - 240 membrane valves & flow path in one acrylic block
- Comprises all valves needed to handle up to 16 columns or membrane devices
- Currently in 1mm and 3 mm bore
 - Larger bore for production system
- Can be used in specific fluid control applications

Combines Flexibility with Simplicity & Scalability

Patent EP 1775001 A1, Patent US20100144028 A1

Continuous Chromatography

Continuos Circular Chronogram

- Visualizes current state of the process
- Columns travel through the process (or actually vice versa)
- Each column results in one elution peak every cycle

UV Absorbance in Product Outlet

Case Study: Clinical & Commercial Mnf

- Processing volume: 2000 L in 8 hr (3 gm/L)
- Blockbuster: optimize for capacity utilization
- Niche/Clinical: optimize specific productivity

Scenario	Batch	C. Chrom Commercial	C. Chrom <i>Clinical</i>
Load capacity	30 gm/L	55 gm/L	32 gm/L
Contact time	4 min	3 min	1 min
Specific productivity	14 gm/L/hr	32 gm/L/hr	65 gm/L/hr
PrA media volume	100 L	20 L	11 L
Column dimensions	80 cm ID	20 cm ID	20 cm ID
	20 cm H	9 cm H	5 cm H
	(2 cycles)	(8 cols)	(6 cols)

Enabling Technologies for Continuous Processing

ILC Single-Pass TFF Performance of TFF with the simplicity of direct-flow filtration **Permeate Retentate** Continuous processing, with shorter process time by process coupling; No recirculation; Low shear exposure;

Feed

No foaming or mixing issues;

ILC + Continuous Chromatography:

Highly Flexible Capture Platform Technology

- mAb titer: 1, 3, 5 g/L
- Process time: 24 h

Process scenarios:

ILC VCF: 2, 4

Process Integration On and Around the Continuous Chromatography Systems

The integration of SPTFF and Continuous Chromatography has been operated over extended period of time

Continuous Laboratory

Ability to produce >> 2 g/h of pure mAb 6 m x 6 m Lab

Continuous Bioprocess: What is Next?

- **Process Monitoring and Control**
- Automation
- Validation and Regulatory
- Additional Enabling Technologies
- Viral Inactivation
- Virus Filtration
- In-Line Diafiltration

Muito Obrigado!

Discussão e Perguntas

