

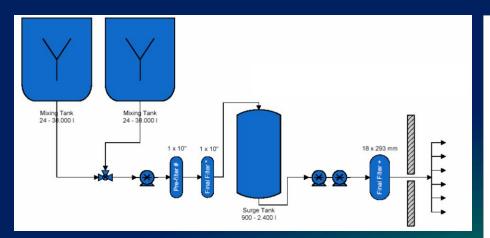
SINGLE-USE TECHNOLOGIES

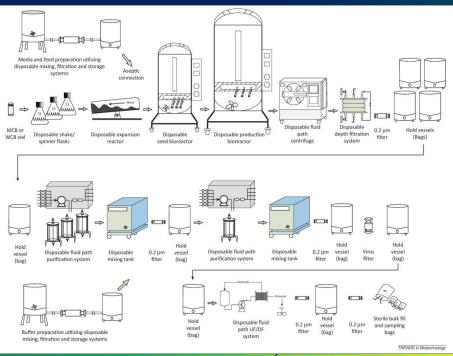
STATUS AND NEEDS

Maik Jornitz

CEO and President G-CON Manufacturing

AGENDA



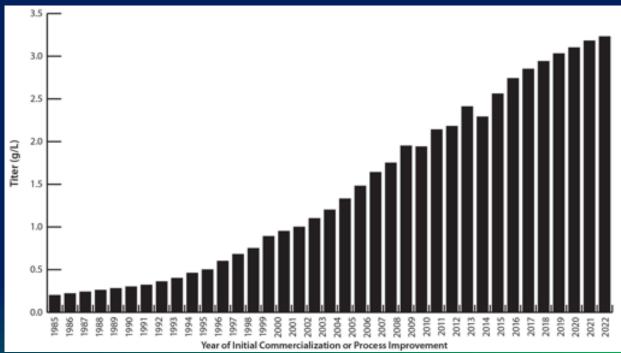

- PRECURSORS
- TECHNOLOGIES
 - Components
 - Benefits
- TASK FORCE
- NEEDS
 - Supplier Information
 - Standardize Extractables/Leachables
 - Integrity Testing

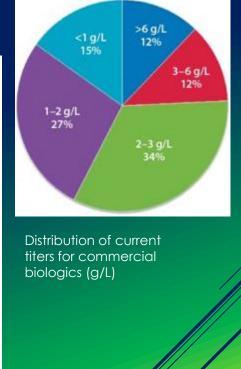
Process Differences

Past process had a restricted amount of unit operations, but were large Bioprocesses are complex and have a multitude of unit operations

PAST PROCESS TECHNOLOGIES

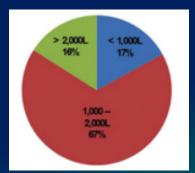
- The processes were mainly complex re-usable stainless steel systems
- These processes were product dedicated
- Cleaning, sterilization and set-up has been laborious and destined for mistakes and risks
- Process designs had high hold-up volumes
- Large footprint requirements for equipment storage and prep
- These processes were focused on large-scale, large volume manufacturing




THINGS CHANGED.... PROCESS INTENSIFICATION

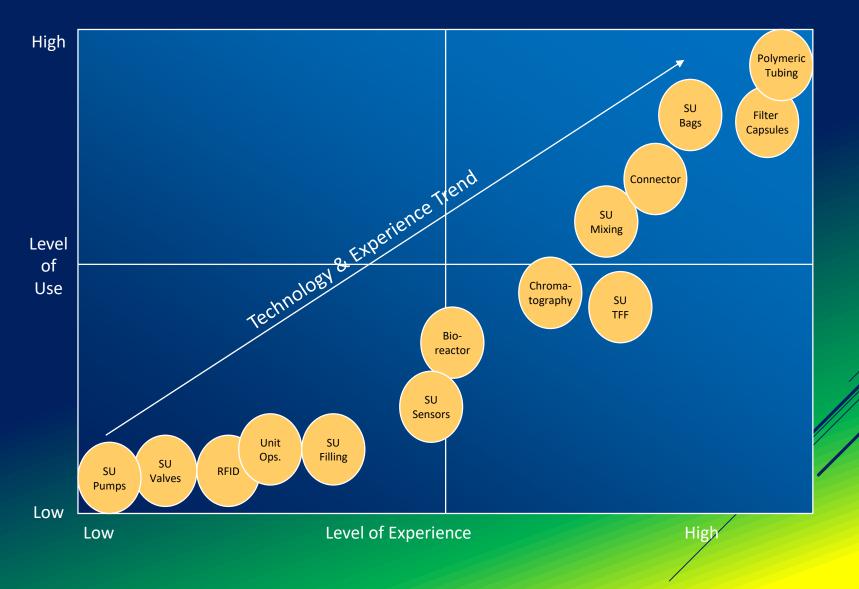
Expression rate increases = Lower fluid volumes

Source: Rader and Langer, 2015

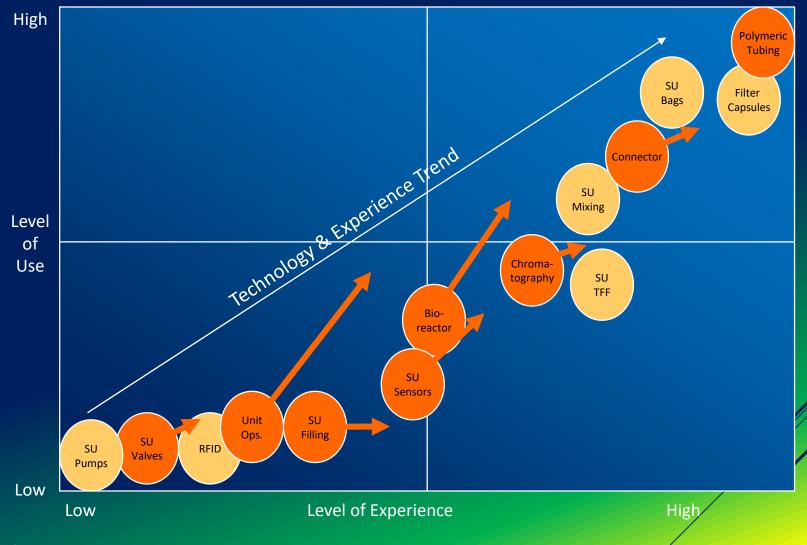

PAST & CURRENT PROCESSES

From large scale stainless steel to medium volume single-use

2,000L SUT becoming the preferred option


De-risking Higher flexibility Faster turn-around Closed systems Advanced PAT

Continuous processing volumes?


SINGLE-USE TECHNOLOGY IN 2010

SINGLE-USE TECHNOLOGY STATUS-QUO ON THE MOVE...

End-user requirements create innovative opportunities

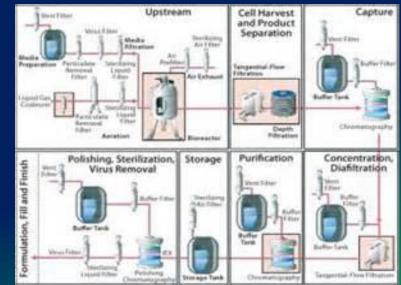
AGENDA

- PRECURSORS
- TECHNOLOGIES
 - Components
 - Benefits
- TASK FORCE
- NEEDS
 - Supplier Information
 - Standardize Extractables/Leachables
 - Integrity Testing

2,000L SU Bioreactors become reality

moving from rocking to stirred

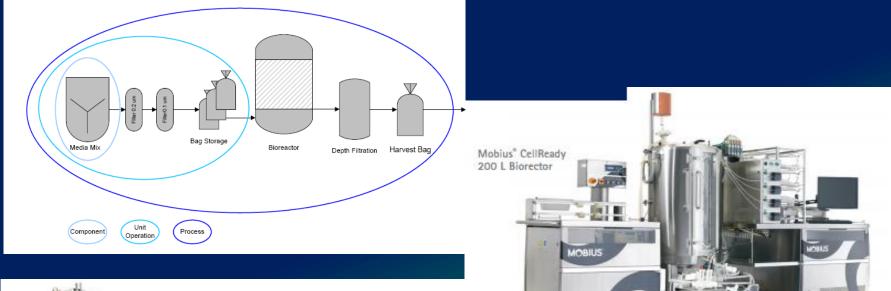
SINGLE-USE PROCESS COMPONENTS



Not just connectors, but high volume connectors, genderless connectors and disconnectors

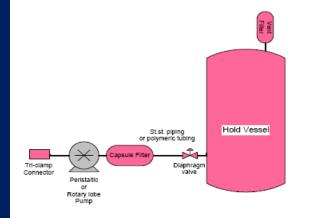
Automatic multi-fill stations and critical fill systems

- Large volume media/buffer fill stations
- SU fill needle/hopper bag assembly
- Robotic enclosed filling

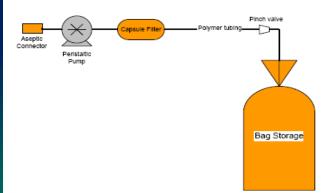


Expansion of the single-use unit operations

PROGRESS INTO SINGLE-USE PROCESSES


Production sites using single-use & containment technology to produce, monoclonal antibodies and vaccines

BENEFIT – SET-UP TIME REDUCTION



Example: Cell Culture Media Hold

Activities:

- open filter packages
- assemble filters, valves, pipe or tubing to tank
- autoclave assembly
- cool down assembly
- assemble tubing or pipe to pump
- vent liquid filter
- filter media
- close valve to tank
- after use; disassemble valves, pipe or tubing and filters
- discard used filter and tubing
- clean tank, valve, pipework, filter housing (rinse, scrub, rinse, clean, rinse, dry)

Activities:

- open filter/bag assembly package
- connect filter/bag assembly to media mix
- insert tubing to peristaltic pump
- vent filter
- filter media
- seal tubing between filter and bag
- after use discard

30 min

Set-up Time

5-8 h

CLEANING/SET-UP DELAY IMPACT (ACTUAL CASE)

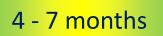
Biotech facility produces max 4 batches, often only 3 Each batch has an estimated market value of \$ 30 Mio

It turned out the bottlenecks are holding tanks: Cleaning/Set-up/Sterilization Time > 8 hours additional rinse WFI availability limitations

A disposable holding and/or mixing system would be set-up in minutes

This improvement would mean: min 1 batch more/week \rightarrow \$ 1.5 Bio additional revenue

Connecting People, Science and Regulation[®]


SINGLE-USE VS. MULTI-USE

(TIME TO IMPLEMENTATION)

The time to implement a single-use fermentation system is greatly reduce in comparison to a multi-use system:

2 - 3 years

Main reasons for the 5 fold reduction:

- Qualification of the equipment
- Cleaning validation
- Qualification of set-up

Source: Stephen Brown, Vialis, PDA/EMEA Meeting 2009

SINGLE-USE VS. MULTI-USE

(WATER CONSUMPTION W/O STEAM NEEDS)

Capital	Total		57,147,809 €			
	Per Litre of	of bioreact(5,718	5,715 €/L		
CoG			226.9 €/g			
Water L	PW	WFI	Total			
Process	32,250	22,783	55,033	32%		
Cleaning	56,998	62,273	119,271	68%		
Total	89,248	85,056	174,304	100%		

Major cost component:

60 % of the costs of a re-usable system

also a common

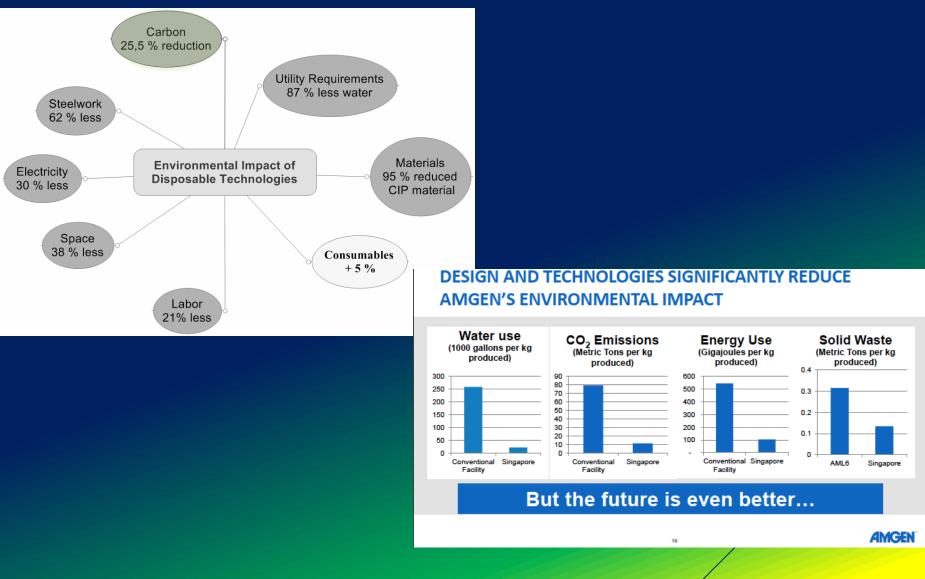
major bottleneck

Water,

Capital	Total		22,156,225 €			
	Per Litre o	of bioreacto	2 ,216 €/ L			
CoG			136.3	€/g		
Water L	PW	WFI	Total			
Process	6,730	22,783	29,513	65%		
Cleaning	14,465	1,245	15,710	35%		
Total	21,195	24,028	45,223	100%		

Source: BioPharm Services

Costs of Polishing: Resin or Membrane ?


Anion exchanger polishing step (flow through) for the removal of DNA, HCP, Protein A and endotoxins

Flux/flow rate100-150 cm/h450-1000 cm/h10 fold cut in processing timeCapacity (large molecules)50-100 g/l10 kg/l100 fold capacity increaseBuffer use100 %2-5 %40 l resin buffer use 700 l Cost per l buffer = approx. \$ 15 Saving ~ \$ 10,000 per runContaminant removalGoodExcellentSet-up time~ 15 h~ 0.5 hCleaning uplidationYesNo		Q Resin	Q Membrane	Cost/Saving Assumptions		
(large molecules)100 %2-5 %40 I resin buffer use 700 I Cost per I buffer = approx. \$ 15 Saving ~ \$ 10,000 per runContaminant removalGoodExcellentSet-up time Cleaning~ 15 h Yes~ 0.5 h No	Flux/flow rate	100-150 cm/h	450-1000 cm/h	10 fold cut in processing time		
Buffer use100 %2-5 %40 l resin buffer use 700 l Cost per l buffer = approx. \$ 15 Saving ~ \$ 10,000 per runContaminant removalGoodExcellentSet-up time~ 15 h~ 0.5 h No	Capacity	50-100 g/l 10 kg/l		100 fold capacity increase		
Contaminant removalGoodExcellentSet-up time~ 15 h~ 0.5 hCleaningYesNo	(large molecules)					
Contaminant removalGoodExcellentSet-up time~ 15 h~ 0.5 hCleaningYesNo	Buffer use	100 %	2-5 %	40 l resin buffer use 700 l		
Contaminant removalGoodExcellentSet-up time~ 15 h~ 0.5 hCleaningYesNo				Cost per I buffer = approx. \$ 15		
removalSet-up time~ 15 h~ 0.5 hCleaningYesNo				Saving ~ \$ 10,000 per run		
Set-up time~ 15 h~ 0.5 hCleaningYesNo	Contaminant	Good	Excellent			
Cleaning Yes No	removal					
	Set-up time	~ 15 h	~ 0.5 h			
Validation	Cleaning	Yes	No			
Validation	validation					

Source: Gottschalk, PhD

BENEFIT – ENVIRONMENTAL IMPACT ?

Source: Sinclair; Leveen, et.al.; The Environmental Impact of Disposable Technologies, The Biopharm International Guide, 11.2008

Van Trieste, PDA Europe Annual Meeting, June 2016

AGENDA

- PRECURSORS
- TECHNOLOGIES
 - Components
 - Benefits
- TASK FORCE
- NEEDS
 - Supplier Information
 - Standardize Extractables/Leachables
 - Integrity Testing

TECHNICAL REPORT

Technical Report No. 66

Application of Single-Use Systems in Pharmaceutical Manufacturing

- Need for clarification of technical terms
- Requirement to find alignment of the statements made for singleuse technology to reduce confusion
- Definition of needs from vendors
- Description and sync of validation activities
- Case study on the determination of the economic benefits
- Implementation example and lessons learned

TECHNICAL REPORT - TEAM

PDDA®

PDA Application of Single-Use Systems in Pharmaceutical Manufacturing Technical Report Team

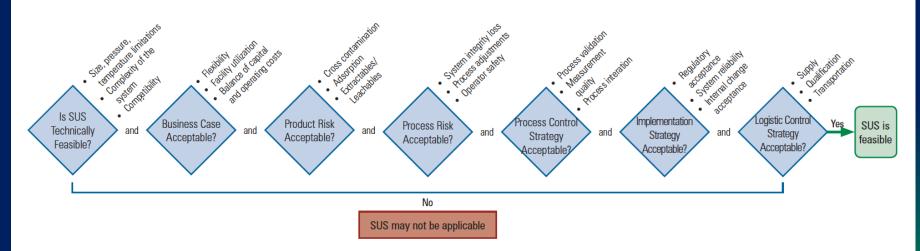
Authors

Robert Repetto, MS, MBA, Team Co-Chair, PfizerDuncan Low, Ph.D., AmgenMorten Munk, Team Co-Chair, CMC BiologicsIngrid Markovic, Ph.D., Food and Drug AdministrationStephen Brown, Ph.D., BE VaccinesJerold Martin, MS, Pall Life SciencesJeffrey Carter, Ph.D., GE HealthcarePaul Priebe, Sartorius Stedim BiotechNiels Guldager, NNE PharmaplanChristopher J. Smalley, Ph.D., Merck & CooChristian Julien, MS, Meissner Filtration Products, Inc.Russell Wong, Ph.D., Bayer HealthCare

Contributors

James Robinson, Lachman Consultants
Hillary Russak, Genentech
Robert Shaw, Finvector—FVT Ltd
Ken Baker, NewAge Industries Inc.
Sally Kline, Ph.D., Amgen
Mani Krishnan, EMD Millipore
Jessica Frantz, Sartorius Stedim Biotech

All Task Force teams are commonly composed from experts of the industry, suppliers, consultants and regulators. To abbreviate the timeline and make the activities move along the Task Force team was a smaller group.


TECHNICAL REPORT - CONTENT

- 1. Introduction
- 2. Glossary of Terms
- 3. Points to Consider for Single-use System Manufacturing Strategy
- 4. Single-use Technologies and System Integration
- 5. Qualification and Verification of Suppliers, Materials, Components, and Completed Assemblies
- 6. Business Drivers for the Adoption of Single-use Systems
- 7. Implementation of a Single-use System
- 8. Appendix I: Overall User Requirement Specification Example
- 9. Appendix II: Project Execution Plan Example
- 10. Appendix III: Training Requirements Example
- 11. References

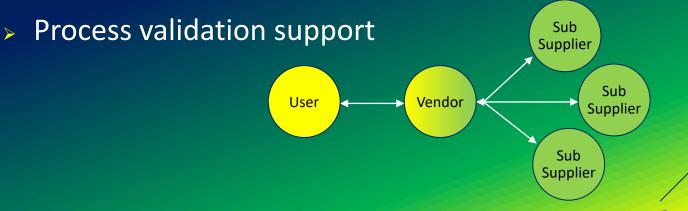
TECHNICAL REPORT – OVERVIEW GRAPHIC

Figure 3.0-2 Proposed SUS Decision Pathway

Initial Feasibility Study for the Manufacturing Strategy: Section 3									
SUS Technical Assessmen and Feasibility: Section 3.	Business Case: Section 3.2		Product and Pro Section					tion Strategy: on 3.5	Logistics Strategy: Section 3.5.8
Key Drivers									
Technology: Section 4 Qu		alification: Section !	5 Business: Section 6		6	Implementation: Section 7			
Detailed Implementation Workflow: Section 7									
Scoping: Section 7.3	Business Case: Section 7.4	Develop	ment: Section 7.5	Testing and Sectio	•	Launch: Sectio		Deployment & Exploitation: ection 7.7.1–7.7.6	Post.Launch Verification: Section 7.7.7

Figure 3.0-3 Technical Report Structure Overview

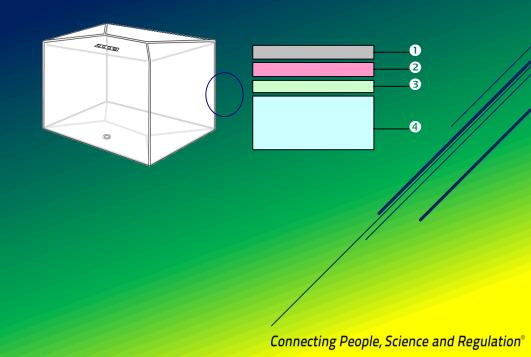
AGENDA



- PRECURSORS
- TECHNOLOGIES
 - Components
 - Benefits
- TASK FORCE
- NEEDS
 - Supplier Information
 - Standardize Extractables/Leachables
 - Integrity Testing

END-USER REQUIREMENTS

- > Thorough qualification testing and documentation
- Long-term supply assurance (health of the company, take-over target, etc. pp.)
- Timely change notifications and comparability studies/ documentation
- Appropriate Quality System (reliance on vendor data and raw material supplier audits)

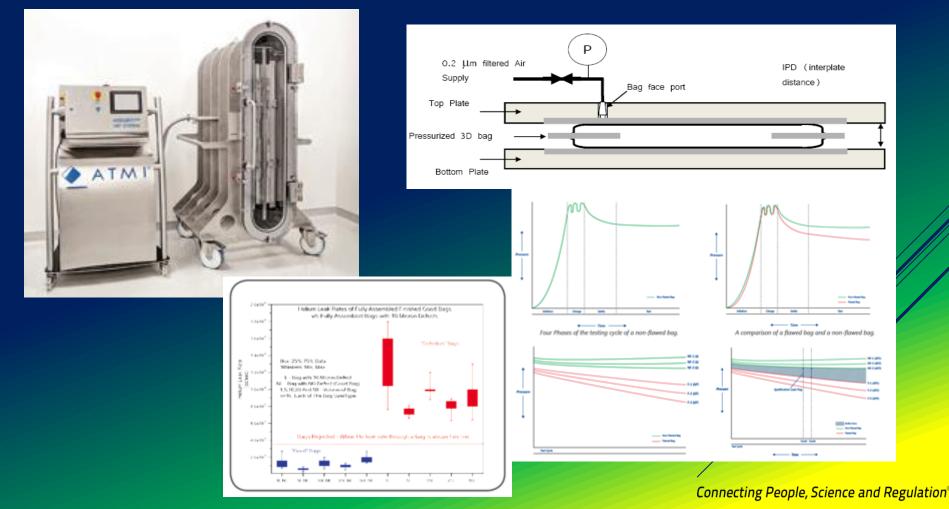


QUALIFICATION REQUIREMENTS

PDA[®]

- γ Sterilization Validation
- Extractables Analysis
 - Actual Product Contact & Duration
 - RP-HPLC, GC-MS, FTIR
 - USP Class VI
- Chemical Compatibility
 - Physical Testing
 - Burst Test
 - Leak Test,
 - Seal Strength
 - Film Thickness

- Endotoxin Testing
- Permeation Analysis
- Long-term Shelf Life
- Unspecific Adsorption
- ✤ Particle Release



Bag and fermentor bag integrity test are published

Production release and end-user integrity tests are offered

Bacterial ingress/flaw correlations are done, but inconclusive

CONCLUSION

- The single-use technology status is rapidly shifting and implemented
- 5 years ago, single-use unit operations were the newest "hit"
- Self-contained process steps or entire processes are very real
- Vendors are not only asked to supply products, but require to support products with an appropriate quality system
- Trade organizations start supplying aligned science & technology documents

A PESSIMIST SEES THE DIFFICULTY IN EVERY OPPORTUNITY; AN OPTIMIST SEES THE OPPORTUNITY IN EVERY DIFFICULTY.

SIR WINSTON CHURCHILL

THANK YOU !

mjornitz@gconbio.com