

Dispelling the Myths of Cleaning Validation

Destin A. LeBlanc
Cleaning Validation Technologies

Capital Chapter PDA Gaithersburg, MD
October 30, 2002

CV myths

- "Things the FDA doesn't allow"
- Covers 8 myths
- Will discuss issues relating to those myths
- Rationale: not unnecessarily restrict scientifically justified options

- "Regulatory authorities don't like rinse water sampling"
- Fact: FDA and PIC/S guidance documents says rinse water sampling is one of two acceptable sampling methods

- "Direct measure" of target residue
- Relating rinse water concentration to potential contamination
- Rinse recovery
- Adequate coverage of rinse solution

- "You must correlate rinse sampling results with swab sampling results"
- Fact: Rinse and swab measure two different things; don't expect correlation

- Swabs focus on small area
- Rinses focus on larger area
- Swab measures worst case
- Rinse measures average

- If both done correctly on same surfaces, may pass on rinse but fail swab
- If both done correctly on same surface, if swabs pass, rinse should also pass

- "You can't use non-specific analytical methods"
- Fact: Non-specific methods such as TOC are widely used and are accepted by regulators

- TOC limit set on dose based calculations, not PW/WFI specs
 - Calculate and express limit as active
 - Convert analytical TOC value to active
 - Compare measured value to limit

- Assume worst case, all TOC due to target residue
- Note: Correctly applied, TOC is more stringent than specific method for target residue

FDA support

Human Drug CGMP Notes --

"We think TOC or TC can be an acceptable method for monitoring residues routinely and for cleaning validation."

- "If you use TOC, you must correlate it with HPLC"
- Fact: As long as TOC is validated with appropriate standards, do not need to "correlate" with HPLC

- What's point of running both TOC and HPLC on same standard for correlation?
- Method validation of TOC with target analyte is adequate and sufficient

- In CV protocols, TOC will never correlate with HPLC results
 - TOC is subject to interferences
 - Can't express exactly how much target residue present, but can assure is at or below measured amount
 - As long as interference increase
 TOC, will be worst case

- "Any residue is unacceptable"
- Fact: With newer methods or with TOC, will always find some residue

- Detection limits of analytical methods achieve lower levels
- Issue is whether residue is medically safe and whether it affect product quality
- But, any visible residue is generally unacceptable

FDA support

Human Drug CGMP Notes - "Should equipment be as clean
 as the best possible method of
 residue detection or
 quantification?"

ANSWER: "No..."

- "Dose-based (MAC) limits calculations are unacceptable"
- Fact: Are referenced in FDA and PIC/S guidance documents

- Have been misused
- Safeguards against unreasonably high limits
 - Consider cumulative residues from equipment train
 - Default limits (such as 10 ppm)
 - Visually clean criterion
 - Reasonable "safety" factors

- Are defaults arbitrary?
- Yes, but so what?
- If medically safe limit is X ppm, and I set my limit is below that, from a regulatory perspective, should there be a concern?

- Consider other medical or safety concerns unrelated to "dose"
 - Allergenic
 - Cytotoxicity
 - Reproductive hazards
- May result in -
 - Limits = LOD of best method
 - Dedicated equipment

- "Recovery percentages at different spiked levels should be linear"
- Fact: Recovery percentages are highly variable. It is not reasonable to expect linear response

Example

Spike	Recovery
1.0 μ g/cm ²	91%
2.0 μg/cm ²	81%
3.0 μ g/cm ²	71%

- Swabbing is a manual procedure (analogy to manual cleaning)
- High variability in recoveries recovery for one individual
- High variability in recoveries among individuals
- As practical matter, will use lowest

- "You can't validate manual cleaning"
- Fact: You will validate manual cleaning processes

- Manual cleaning more variable than automated processes
- Consistency of manual cleaning depends on adequate detail in written procedure and adequate training of operators
- Requires more attention to validation maintenance

Origin of myths

- Probably misinterpretation or misapplication of 483's
 - Example: "Your use of rinse water sampling is inappropriate to...."
 - Faulty conclusion: Can't use rinse water sampling
 - Correct response: Use rinse sampling correctly

Suggestions

- Don't chase latest 483
- Design a comprehensive, defendable cleaning validation program
- Confirm (or disprove) "You can't..."
 statements by regulatory documents
 (Human Drug CGMP Notes, Warning
 Letters, Guidance Documents,
 GMPs)

Q&ADiscussion

