Sterile Product Package Integrity Testing Current Practice, Common Mistakes, New Developments

By Dana Morton Guazzo, PhD RxPax, LLC Bridgewater, NJ 08807 dguazzo@rxpax.com

> PDA Metro Chapter May 17, 2010

Sterile Product Package Integrity Testing Current Practice, Common Mistakes, New Developments

Part 1 Marketed Sterile Products Package integrity related recalls

- Part 2 Dye Ingress Leak Tests "Best practices"?
- Part 3 Best Practices Leak Test Methods Validation Concepts
- Part 4 Best Practices Leak Test Methods *Proven Nondestructive Methods*

Summary

Part 1 **Marketed Sterile Products** Package integrity related recalls

• PRODUCT

AMO COMPLETE Multi-Purpose Solution

RECALLING FIRM/MANUFACTURER

Recalling Firm: Abbott Medical Optics Inc (AMO), Santa Ana, CA, by letter on July 28, 2010 Manufacturer: Advanced Medical Optics Manufacturing Spain, S.L., Alcobendas (Madrid), Spain

REASON

A limited number of the flip top caps used during production of these solutions may leak and, although unlikely, the sterility of the product may be compromised. Products that are non-sterile have the potential to cause eye infections, which may be sight threatening

• VOLUME OF PRODUCT IN COMMERCE 34,224 units

PRODUCT

Midazolam Injection, USP, 2 mg/2 mL (1 mg/mL), 10 x 2 mL Single-dose Sterile Cartridge Unit with Luer Lock per carton

• RECALLING FIRM/MANUFACTURER

Recalling Firm: Hospira, Inc., Lake Forest, IL, by letter dated June 29, 2010 Manufacturer: Hospira, Inc., McPherson, KS

• REASON

Quality procedures were incomplete prior to the release of the product which could result in cracked vials which could compromise the sterility of the product

• VOLUME OF PRODUCT IN COMMERCE 840 cartons

PRODUCT

Epinephrine injection, USP, auto-injector

RECALLING FIRM/MANUFACTURER

Recalling Firm: Shionogi Pharma, Inc., Atlanta, GA, by letter on/about October 28, 2010 Manufacturers: Hospira, Inc., McPherson, KS; Covidien LP, Deland, FL; Phillips Plastics Corp, Phillips Medical, Menomonie, WI

• REASON

Possibility exists a small number of sheaths covering the needle may have pinholes

• VOLUME OF PRODUCT IN COMMERCE

34,629 units

• PRODUCT

Cancidas (Caspofungin acetate) for Injection, for Intravenous Use, 50 mg

RECALLING FIRM/MANUFACTURER

Recalling Firm: Merck Sharp & Dohme, West Point, PA, by letter June 7, 2010. Manufacturer: Merck & Company, Inc., West Point, PA

• **REASON**

Lack of Assurance of Sterility (cracked vials)

• VOLUME OF PRODUCT IN COMMERCE

482 vials

PRODUCT

Invega syringes, 234mg

• RECALLING FIRM/MANUFACTURER

Recalling Firm: Johnson & Johnson, Feb 15, 2011

• REASON

May have cracks which possibly could affect the drug's sterility. The crack is completely covered by the label and is not detectable by the user

• VOLUME OF PRODUCT IN COMMERCE 70,000 est

PRODUCT

Glucagon [rDNA Origin] for Injection, 1mg

• RECALLING FIRM/MANUFACTURER

Recalling Firm: Novo Nordisk, Inc., Princeton, NJ, by letters on November 11, 2010

Manufacturer: Novo Nordisk A/S, Gentofte, Denmark

• REASON

There is a potential for cracked vials of Glucagon powder within the kit

• VOLUME OF PRODUCT IN COMMERCE

13,698 vials

PRODUCT

Enbrel (etanercept) SureClick Autoinjector, 50 mg/mL, For Subcutaneous Use Only

• RECALLING FIRM/MANUFACTURER

Amgen Manufacturing, Limited, Juncos, PR, by letter on September 14, 2009 and January 18, 2010

• REASON

Syringe barrel flange that slightly deviated from the center line of the syringe barrel, resulted in broken or cracked syringes

• VOLUME OF PRODUCT IN COMMERCE 2,948,741 syringes

• PRODUCT

0.9% Sodium Chloride Injection, USP, latex free IV bags

• RECALLING FIRM/MANUFACTURER

Recalling Firm: Hospira Inc., Lake Forest, IL, by letter on March 4, 2011 and March 23, 2011

Manufacturer: Hospira, Inc., Austin, TX

REASON

The product is being recalled due to defective containers. The bags containing the 0.9% Sodium Chloride Injection, USP solution has the potential to leak. Leaking bags have the potential to result in contamination

• VOLUME OF PRODUCT IN COMMERCE

518,376 bags

PRODUCT

Exacta Mix TPN (total parenteral nutrition) Bag

• RECALLING FIRM/MANUFACTURER

Baxa Corp., Englewood, CO, by letter on November 12, 2009 and November 17, 2009

REASON

TPN bags may leak fluid due to inadequate sealing

• VOLUME OF PRODUCT IN COMMERCE

5,513 cases (US) 353 cases (International)

Recent Recalls Summary

- Package integrity related recalls continue to plague industry
- Multiple package types are impacted
 - Syringes, cartridges
 - Vials
 - IV bags
 - Ophthalmic solution bottles
- Current leak testing and package development practices are ineffective in preventing major recalls

Part 2

Dye Ingress Leak Tests *"Best practices"?*

- Likely, most common pharma leak test method
- Reliance on dye ingress tests <u>does not represent</u> <u>"best practices"</u>
- Why?
 - Lack of validation
 - 'Standard' dye methods USP/PharmEur, ISO
 - Company-specific methods
 - Validation studies have shown a lack of sensitivity and reliability
 For example...

Dye Ingress Method Comparison

Closure Re-seal Method Parameters	USP 31 <381> Ph.Eur. 3.2.9	ISO 8362-5 Annex C	Modified ISO
Dye	0.1% aq. Methylene Blue		
Vacuum	-27 KPa	-25 KPa	-37 KPa
Time at Vacuum	10 min	30 min	30 min
Time at Ambient	30 min	30 min	30 min
Detection method		Visual inspection	

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

Test samples

BD Glass Syringes, 1mL, Staked Needle, Water-filled

Dye Ingress Method Comparison

- Inspector Qualification Study
 - Test Samples
 - 1mL water-filled syringes WITH and WITHOUT methylene blue
 - Known (-) controls for comparison
 - Logistics
 - 3 Test sites, 3 Inspection stations, 10 Inspectors
 - 10 sec pacing, randomized, blinded
 - Inspection stations varied: lighting type, intensity, position, background angle and position
 - Results

LOD varied from 0.2 to 0.5 ppm

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

Dye Ingress Method Comparison

Glass Syringe Defects by Lenox Laser

Nominal hole size 5 µm

Nominal hole size 15 µm

136

Test Samples	USP/Ph.Eur. Dye Test (-27kPa 10 min, amb 30 min)			
	YES (Dye visible) or NO (Not visible)			
	Inspector 1	Inspector 2	Inspector 3	
Negative Controls	No	Νο	No	
	Νο	Νο	Νο	
	Νο	Νο	Νο	
	Νο	Νο	Νο	
	Νο	Νο	Νο	
5 µm	No	No	Yes	
	No	Yes	Yes	
	No	Yes	Yes	
	Νο	Νο	Νο	
	Νο	Νο	Yes	
10 µm	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	No	Νο	Yes	
	Νο	Νο	No	
15 µm	No	No	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

USP/PhEur Dye Ingress Test Samples

10 µm

15 µm

5 µm

Negative Controls

RxPax, LLC, PDA Metro Chapter, May 2011 H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

Test Samples	ISO Dye Test			
	(-25kP	a 30 min, amb 3	30 min)	
	YES (Dye visible) or NO (Not visible)			
	Inspector 1	Inspector 2	Inspector 3	
Negative	Νο	Νο	Νο	
Controls	Νο	Νο	Νο	
	Νο	Νο	Νο	
	Νο	Νο	Νο	
	Νο	Νο	No	
5 µm	Νο	Νο	No	
	Νο	Νο	Yes	
	Νο	Yes	Yes	
	Νο	Νο	Yes	
	Νο	Νο	Νο	
10 µm	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Νο	Νο	Yes	
	Νο	Νο	Νο	
15 µm	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

Test Samples	MODIFIED ISO Dye Test			
	(-37kPa 30 min, amb 30 min)			
	YES (Dye visible) or NO (Not visible)			
	Inspector 7	Inspector 8	Inspector 10	
Negative	No	Yes	No	
Controls	Νο	Yes	No	
	Νο	No	Yes	
	Νο	Yes	Yes	
	Yes	No	Νο	
5 µm	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
10 µm	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
15 µm	Yes	Yes	Yes	
-	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	
	Yes	Yes	Yes	

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

Negative Controls

15 µm

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

RxPax, LLC, PDA Metro Chapter, May 2011

- Comparison study observations
 - Inspector capabilities varied
 - 'Standard' inspection conditions not defined
 - 'Standard' methods lacked sensitivity, reliability
 - 'Optimized' method resulted in > false positives

No dye ingress advantages reported

- Other disadvantages
 - False negative risks
 - Proteins clog leak paths, inhibiting dye ingress
 - Dye dilution in larger volumes
 - Dye may fade over time
 - False positive risks
 - Inspector error
 - Sample contamination (if analytically analyzed)
 - Destructive method

- <u>Any</u> advantages?
 - Useful for gross leak detection
 - Useful as a lab tool for leak visualization, location

Part 3 **Best Practices Leak Test Methods** Validation Concepts

29

Therefore, <u>positive control test samples</u> with leaks of appropriate size and type are required

Proven using a random mix of *positive (with-leak) and* <u>negative (no-leak) controls</u>

- Proven using various <u>defect types</u> and <u>sizes</u>
- Sensitive

Reliable

Meet validation criteria

Best Practice Leak Test Methods

D. Guazzo, "Package Integrity Testing" Chapter 4, Parenteral Quality Control, 2nd Ed., Marcel Dekker, NYC, 1994

Critical Leak Spec

- Sterile product "critical leak" rate or defect size
 - Risks microbial ingress

→ sterility loss

Loss of critical headspace gases

\rightarrow instability

Loss of headspace vacuum

 \rightarrow instability

→ product access difficulty

Sterility Assurance Critical Leak Spec

- *Published Study* Lee Kirsch, et al 1997-99
 - Glass micro-pipettes through wall of stoppered glass vial
 - Sized via helium mass spec
 - 0.1 to 10µm diameter
 - Microbial challenge by immersion + liquid tracer element
 - 10⁸ to 10¹⁰ P. diminuta and E. coli cfu/mL
 - Tween 80 additive
 - Mg ion tracer for liquid path verification
 - Detection by atomic absorption
 - Challenge conditions
 - Airlock elimination procedure
 - Water bath immersion 60°C 2hr, then 25°C 1hr
 - 24 hr immersion, ambient pressure

Kirsch vial test unit

Figure 1—Schematic description of the modified pharmaceutical vials used as test units for the evaluation of mass spectrometry-based helium leak rate measurements.

Kirsch, et al, PDA J Pharm Sci & Technol 51, 5, 1997 p. 188

Microbial ingress vs. Micro-pipette diameter vs. Helium leak rate

Figure 2—The correlation of microbial failure rate (%) and the mean logarithm of the absolute leak rate and nominal leak diameter for modified SVPs. The absolute leak rate (standard cubic centimeters per second) was determined by mass spectrometry-based helium leak rate detection. Microbial failure was measured by microbial ingress after 24 hour immersion in a bath (37°C) containing 10⁸ to 10¹⁰ *P. diminuta* and *E. coli* organisms/mL and a 13 day, 35°C incubation.

- Ingress risk dropped
 dramatically
 - Log -3.8 sccs
 - <~1µm
- No ingress
 - Log -5 to -5.8 sccs
 - ~0.3 to 0.2μm

Kirsch, et al, PDA J Pharm Sci & Technol 51, 5, 1997 p. 200

Liquid vs. Microbial ingress vs. Helium leak rate

Figure 1: Logistical regression models describing the probability of microbial or liquid tracer (Mg ion) as a function of the logarithm of the helium leak rates. Curves were generated using Equation 1 and parameters estimated with the logistical regression platform in the software JMP (10).

- Microbial ingress
 <u>required</u> liquid flow
 - > Liquid flow =
 - > microbial ingress *risk*
- Liquid flow ≠ microbial ingress

Kirsch, PDA J Pharm Sci & Technol 54, 2000 p. 309

Sterility Assurance Critical Leak Spec

Study Author	Challenge medium	Challenge microbe	Challenge path	Challenge conditions	Threshold path size
Kirsch JPDA '97-'99	Liquid	P. diminuta E. coli	Glass micro-pipette	Airlock elimination step + 24 hr ambient	0.3 μm
Burrell JPDA 2000	Liquid	E. Coli	Poly-coated glass micro-tube	ISO closure reseal: 30 min 22"Hg + 30 min ambient	10 μm
Keller J Applied Pkgg Res 2006	Aerosol	P. Fragi	Nickel micro-tube	Varied: -20 kPa to +20 kPa 4 to 37ºC	5 μm

- "Critical leak" threshold ranged from <u>0.3 to 10µm</u>
- Leak path *liquid presence* is required for microbial ingress
 - > Liquid flow = > microbial ingress <u>potential</u>
 - Liquid presence <u>does not guarantee</u> microbial ingress
 - Liquid presence may be more important than *challenge medium*
Sterility Assurance Critical Leak Spec

- Critical leak spec remains undefined for "real leaks"
 - Real leak paths are *not holes, tubes, pipettes*
 - Natural defects are long, complex, irregular channels
 - Defects consist of actual package materials
 - Air pockets, debris, even product may *block flow*

Positive Control Leakage Behavior

- *Published Study* Bradley Morrical, et al 2007
 - Leakage of two leak types compared
 - Glass vial packages
 - Micro-hole in metal plate on stopper
 0.5 to 15 μm
 - Copper wire between stopper and vial 10 to 120 µm
 - Leak methods
 - Helium trace test
 - Microbial challenge
 - Serratia marcenscens
 - Vacuum
 - Pressure

Mass spectrometry

≥ 10⁸ cfu/mL

- 0.4 bar 1 hr
- + 0.4 bar 1 hr

Schematic of vial with microhole. The use of an injection needle to penetrate the rubber stopper ensured the leak was only due to the microdrilled hole. A small o-ring provides a proper seal on the backside of the microhole.

Morrical vial test unit with wire leak

Schematic of vial with copper wire as a microleak. Wire was laid carefully over the rim of the glass vial and visually inspected to ensure the wire remained intact after sealing.

Morrical He+ mass spec test fixture

Figure 1

Helium leak rate test apparatus for glass vials. Helium is flowed in through a tube and an outlet maintains ambient pressure. The rubber o-ring seals isolate the test leak from the helium inlet. Measurement is made with a mass spectrometric helium leak detector.

Positive Control Leakage Behavior

Defect type	Defect size (µm)	He+ leak rate (mbarL/s)	Microbial ingress observed (%)
Hole	1	4.8 log -4	0
	2	1.4 log -3	0
	4	6.1 log -3	20
	8	2.8 log -2	30
	15	9.3 log -2	90
Wire*	15	1.3 log -5	0
	20	2.2 log -5	35
	28	1.5 log -4	85
	40	1.6 log -3	95
	60	5.3 log -3	100

 Holed vial helium flow matched theoretical predictions for orifice

Wired vial helium flow followed less predictable, more complex dynamics

•

* Data represent 'machine-sealed' units. See reference for 'hand-sealed' data

Positive Control Recommendations

- Laser-drilled holes
 - Benefit
 - Closely simulates package wall crack, pinhole
 - Product and package impact on leak detection checked
 - Size
 - \geq 5 µm for most materials (plastic, glass, films)
 - May vary according to material and wall thickness
 - Smaller sizes difficult to create, certify and readily clog
 - Location
 - Above and below product-fill level
 - As close to critical seal area as possible

Naturally Occurring Defects

Naturally Occurring Defects

Positive Control Example

Glass Syringe Defects by Lenox Laser Nominal hole size 5 µm

Microscope photo by BMS

Electron-microscope photo by Amgen

Positive Control Recommendations

"Type defects"

- Examples
 - Loose cap, damaged stopper
 - Scored land sealing surface
 - Gap or channel in heat seal
 - Needle protruding through needle-shield
- Benefit
 - Verifies ability of CCI method to find defects likely to occur
 - Greatest benefit during method development studies
- Size
 - Exact sizing may not be feasible
 - 'Type' defects are often 'large' leaks

Ironically, <u>larger defects</u> are the cause for <u>product recalls</u>

Positive Control Type Defect Example

Hole creation 0.10 - 0.16 mm

RxPax, LLC, PDA Metro Chapter, May 2011

Positive Controls are <u>NOT</u> LOD Standards

Positive controls

- Product-filled with-defect packages
- Used to verify actual leaking package detection capability

Limit of detection standards

- A known, fixed standard
- Evaluates instrument detection capability under <u>ideal</u> conditions

Positive Controls are <u>NOT</u> LOD Standards

Test	Method LOD Standard
Microbial ingress	Growth promotion test
Dye ingress	Minimum detectable dye concentration
Vacuum decay	 Minimum detectable NIST airflow rate Smallest detectable in-line fixed orifice
High voltage leak detection (HVLD)	Minimum detectable voltage
Helium mass spectrometry	Standard Helium flowmeter detection limit
Frequency modulation spectroscopy (FMS)	Minimum detectable oxygen concentration or partial pressure

Negative Control Recommendations

- No-leak packages
 - Ideally, normal distribution is represented
 - Assembly operations
 - Component fit
 - Multiple sources or lots
 - Product- or placebo-filled

Part 4 **Best Practices Leak Test Methods Proven Nondestructive Methods**

Proven Nondestructive Methods

• "Proven"

Validation and suitability supported by data in peer-reviewed publications

• Test methods

- 1. Vacuum decay
- 2. High voltage leak detection (HVLD)
- 3. Laser-based headspace detection (FMS)

1. Vacuum Decay

- For dry or liquid products, most package systems
- Detects pressure rise from gas or vapor egress
- Limitations
 - Protein clogging often prevents leak detection
 - Liquid leaks may contaminate test chamber
- Considerations
 - Faster tests limit sensitivity
 - Instrument design/make can influence test results
 - Transducers and internal system design
 - No-leak baseline stability

ASTM F2338-09 Round Robin Study

Packages

1mL glass syringes by BD

- Positive controls Laser-drilled holes 5, 10, 15 μm
- Vacuum decay tests
 - Study 3 NIST calibrated airflow meter
 - Study 4 Air-filled syringes
 - **Study 5** Water-filled syringes
- Logistics
 - 3 Test sites
 - 3 Instruments
 - 3 Replicates of ea. study at ea site, 2 days per site
 - Samples randomized within ea. study

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 477 - 488

Amgen, BMS, PTI PTI VeriPac 325-LV

Leak test parameters	Parameter limits
Evacuation (Fill) time	6 s
Equalization time	0.2 s
Test time	8 s
Pressure rise reference limit 1000 Torr transducer	2 mbar (abs)
Pressure rise reference limit 10 Torr transducer	25 Pa (differential)

Test instrument by Packaging Technologies & Inspection, LLC Model PTI VeriPac 325/LV

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 477 - 488

Syringe Contents	No. Packages Tested	No. Tests	No. FAILED	No. PASSED	% Accurate
Study 4: Air	15	45	45	0	100
Study 5: Water	15	45	45	0	100

Test Samples	Air-filled Syringe Vac decay dP (Pa)	USP/Ph.Eur. Dye Test (-27kPa 10 min, amb 30 min) YES (Dye visible) or NO (Not visible)		
	Pass or Fail	Inspector 1	Inspector 2	Inspector 3
Negative	11	No	No	No
Controls	10	No	No	Νο
	12	No	No	Νο
	9	No	No	Νο
	9	No	No	Νο
5 μm	25 (4.7 μm)	No	No	Yes
	71	No	Yes	Yes
	80	No	Yes	Yes
	43	No	No	No
	42	No	No	Yes
10 µm	217	Yes	Yes	Yes
	177	Yes	Yes	Yes
	264	Yes	Yes	Yes
	231	No	No	Yes
	161	No	No	No
15 µm	ABORT	No	No	Yes
	344	Yes	Yes	Yes
	342	Yes	Yes	Yes
	350	Yes	Yes	Yes
	281	Yes	Yes	Yes

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

62

Test	Air-filled Syringe		SO Dye Tes	st
Samples	Vac decay	(-25kPa 30 min, amb		o 30 min)
	dP (Pa)	YES (Dye visible) or NO (Not visible		
	Pass or Fail	Inspector 1	Inspector 2	Inspector 3
Negative	7	No	No	No
Controls	6	No	No	Νο
	7	No	No	Νο
	6	No	Νο	Νο
	7	No	No	No
5 µm	22 (4.7 μm)	No	No	No
	66	No	Νο	Yes
	79	No	Yes	Yes
	44	No	No	Yes
	42	No	No	Νο
10 µm	205	Yes	Yes	Yes
	175	Yes	Yes	Yes
	260	Yes	Yes	Yes
	221	No	Νο	Yes
	154	No	No	No
15 µm	388	Yes	Yes	Yes
	346	Yes	Yes	Yes
	335	Yes	Yes	Yes
	337	Yes	Yes	Yes
	301	Yes	Yes	Yes

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

Test Samples	Air-filled Syringe Vac decay dP (Pa)	MODIFIED ISO Dye Test (-37kPa 30 min, amb 30 min) YES (Dye visible) or NO (Not visible)		
	Pass or Fail	Inspector 7	Inspector 8	Inspector 10
Negative	9	No	Yes	No
Controls	9	No	Yes	No
	10	No	No	Yes
	9	No	Yes	Yes
	17	Yes	No	No
5 µm	57	Yes	Yes	Yes
	96	Yes	Yes	Yes
	43	Yes	Yes	Yes
	41	Yes	Yes	Yes
	51	Yes	Yes	Yes
10 µm	ABORT	Yes	Yes	Yes
	191	Yes	Yes	Yes
	ABORT	Yes	Yes	Yes
	ABORT	Yes	Yes	Yes
	188	Yes	Yes	Yes
15 µm	ABORT	Yes	Yes	Yes
	ABORT	Yes	Yes	Yes
	ABORT	Yes	Yes	Yes
	ABORT	Yes	Yes	Yes
	ABORT	Yes	Yes	Yes

H. Wolf, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

2. High Voltage Leak Detection

- For nonflammable conductive liquid product in electrically insulating package
 - small molecule or proteinaceous active
- Detects liquid present near leak path
- Fast, clean test method
- Considerations
 - Method-product compatibility to be checked
 - Whole package vs. spot location checks
 - Package rotation to capture leaks in headspace region
 - Instrument make/design can influence test results

Glass Vial Finish Defects Leak detection and product risk assessment

Stephen T. Orosz, Jr. PhD ImClone Systems

a wholly-owned subsidiary of Eli Lilly & Co. Branchburg, NJ

Dana Morton Guazzo, PhD

RxPax, L.L.C. Bridgewater, NJ

WHITEHOUSE ANALYTICAL LABORATORIES, LLC Whitehouse, NJ

ImClone Systems

PDA Annual Meeting, Packaging Science Interest Group March 16, 2010 Orlando, FL

Glass Vial Finish Defects Study

Challenge

• 50-mL 20-mm molded glass vials with finish defects

Project scope

- ID defects sources, risk of propagation and leakage
- ID a nondestructive leak test able to find such defects in finished product packages
 - Aqueous solution formulations
 - 20mm elastomeric serum stopper
 - 20mm aluminum flip seal

135X, Magellan V20 Video Microscope

Vial ID code	Analyzed by	Description	Propagation risk	Leakage risk
4, 5, 6	AGR, GPT	Large split	Moderate to high under certain handling conditions	Very likely

135X, Magellan V20 Video Microscope

Vial ID code	Analyzed by	Description	Propagation risk	Leakage risk
8	AGR	Smaller split	Not likely	Possible if not capped properly
	GPT	Open check or chip	Possible, may lead to split finish	Possible if finish splits
7	AGR	Rough surface Unfilled finish flaw	Not likely	Possible if not capped properly
	GPT	Rough surface Plunger mark	Not likely	Possible if not capped properly

135X, Magellan V20 Video Microscope

Vial ID code	Analyzed by	Description	Propagation risk	Leakage risk
9, 10, 11, 12, 13	AGR	Neck ring seams Knockout on inside lip	Not likely	Not likely
, ••	GPT	Mismatched neck ring seam, Plunger mark Somewhat healed split finish	Healed split finish might extend	Possible if finish split opens

135X, Magellan V20 Video Microscope

Vial ID code	Analyzed by	Description	Propagation risk	Leakage risk
9, 10, 11, 12, 13	AGR	Neck ring seams Knockout on inside lip	Not likely	Not likely
,	GPT	Mismatched neck ring seam, Plunger mark Somewhat healed split finish	Healed split finish might extend	Possible if finish split opens

135X, Magellan V20 Video Microscope

Vial ID code	Analyzed by	Description	Propagation risk	Leakage risk
3	AGR	Fold defect Loading mark defect or knockout defects	Not likely	Not likely
	GPT	Heavy lap in neck	Small risk	Not likely

135X, Magellan V20 Video Microscope

Vial ID code	Analyzed by	Description	Propagation risk	Leakage risk
1, 2	AGR	Fold defect Loading mark defect or knockout defects	Not likely	Not likely
	GPT	Laps Mismatched and/or heavy neck ring seams Cords, Loading marks	Not likely	Not likely

Glass Vial Finish Defects Study

- Artificial defects created for leak testing
 - Holes through vial neck Laser drilled
 - Lenox Laser, Glen Arm, MD
 - Sizes 15, 25, 50 µm nominal diameter
 - Channel defect Dremel[®] saw
 - Land surface (horizontal, top)
 - Valve surface (vertical, neck)
 - Land + valve surfaces
 - Sizes 0.7-3.1 mm (W) x 0.6-1.5 mm (H)
- No defect Negative controls

135X, Magellan V20 Video Microscope

Glass Vial Finish Defects Study

- Vacuum decay leak test
 - Packaging Technologies & Inspection
- High voltage leak test
 - Nikka Densok U.S.A.

Vacuum Decay Leak Test ASTM F2338-09

PTI VeriPac 325/LV

Test chamber

High Voltage Leak Test

Nikka Densok HVLD Model HDT1

Positive leak detection

- Test samples
 - Negative controls, no defect packages
 - Positive controls
 - Natural defect vials
 - Laser-drilled holes through glass vial neck
 - Channels cut along seal surfaces
 - Package contents
 - <u>Artificial</u> defects: 1/2 = <u>active</u> product 1/2 = placebo
 - <u>Natural</u> defects all contained active product

Hole size	Package contents	# Packages tested	# Packages ID'd as LEAKING		
(µ)			Vacuum decay	HVLD	
15	Placebo	10	10	10	
	Active	10	8	10	
25	Placebo	10	10	10	
	Active	10	9	10	
50	Placebo	10	10	10	
	Active	10	10	10	

Channel location	Package	# Packages	# Packages ID'd as LEAKING		
	contents	lested	Vacuum decay	HVLD	
None	Placebo	50	0	0	
	Active	51	0	2*	
Valve	Placebo	10	0	0	
	Active	10	0	0	
Land + Valve	Placebo	10	10	10	
	Active	10	10	10	

* Second HVLD failure was confirmed for a total of 5 HVLD tests. Both packages demonstrated **HVLD char marks** across vial and stopper land surfaces.

Natural defects

Vial ID code	Defect description	Leakage risk	ACTIVE PRODUCT-FILLED LEAKING Vial Packages	
			Vacuum Decay	HVLD
5, 6	Large split	Very likely	5	5, 6
8	Smaller split	Possible if not capped properly		8
	Open check or chip	Possible if finish splits		
7	Rough surface Unfilled finish flaw	Possible if not capped properly		
	Rough surface Plunger mark	Possible if not capped properly		

Natural defects

Vial ID code	Defect description	Leakage risk	ACTIVE PRODUCT-FILLED LEAKING Vial Packages		
			Vacuum Decay	HVLD	
9, 10, 11, 12, 13	Neck ring seams Knockout on inside lip	Not likely			
	Mismatched neck ring seam, Plunger mark Somewhat healed split finish	Possible if finish split opens			
3	Fold defect Loading mark defect or knockout defects	Not likely			
	Heavy lap in neck	Not likely			
1, 2	Fold defect Loading mark defect or knockout defects	Not likely			
	Laps Mismatched and/or heavy neck ring seams Cords, Loading marks	Not likely			

SUMMARY

- HVLD and Vacuum decay are effective leak detection methods
 - Channel defects
 - land seal surface
 - land + valve seal surfaces
 - Hole defects in vial wall
 - Split or cracked finish defects
- However,
 - HVLD detected a larger % of potential leaking packages

Leak Detection vs. Product Formulation, Storage time

• Purpose

 To determine effects of product formulation, product storage time on HVLD and vacuum decay results

Test samples

- Vials laser drilled holes (15, 25, 50 μ)
- Packages contained either
 - Proteinaceous active product solution
 - Placebo solution
- Experiment
 - Samples leak tested in random order on days 1 and 29
 - Vacuum decay first, then HVLD on each test day

Leak Detection vs. Product Formulation, Storage time

Vial Packages hole size tested		# Packages ID'o DAY	as LEAKING 1	# Packages ID'd as LEAKING DAY 29			
(μ)	(#)	Vacuum decay	HVLD	Vacuum decay	HVLD		
PRODUC	T-FILLED						
15	10	8	10	2	10		
25	10	9	10	2	10		
50	10	10	10	3	10		
PLACEB	PLACEBO-FILLED						
15	10	10	10	10	10		
25	10	10	10	10	10		
50	10	10	10	10	10		

Leak Detection vs. Product Formulation, Storage time

SUMMARY

- Vacuum decay FAILED to find package defects
 - Protein blockage of defect leak path suspected
- HVLD DETECTED all leaks
 - HVLD not influenced by protein presence
- Protein blockage risk increases over time

HVLD Exposure Effects on Product P-C Properties

• Purpose

- Determine HVLD exposure effects on proteinaceous product
- Test samples
 - Three different proteinaceous active products
- Experiment
 - Product exposed to HVLD at 25kV 0x, 1x, 10x
 - Assays: Monomeric peak, High and Low MW species

HVLD Exposure Effects on Product P-C Properties

ImClone Systems Products

HVLD Exposure	Product A			Product B			Product C					
	Mono Pé	omeric eak	High MW Species	Low MW Species	Mono Pé	omeric eak	High MW Species	Low MW Species	Mone Pe	omeric eak	High MW Species	Low MW Species
	Rel. MW	% Purity	% Purity	% Purity	Rel. MW	% Purity	% Purity	% Purity	Rel. MW	% Purity	% Purity	% Purity
None	142	97.6	1.5	1.0	138	98.0	0.5	1.1	170	99.1	0	0.9
1 x 25kV	142	97.5	1.5	1.0	138	98.0	0.5	1.1	170	99.1	0	0.9
10 x 25kV	142	97.5	1.5	1.0	138	98.0	0.5	1.1	170	99.1	0	0.9

SUMMARY: HVLD exposure demonstrated no impact

Advances in HVLD Technology

E-Scan Laboratory HVLD Instrument

Nikka/PTI collaboration

- Frequency Modulated Spectroscopy (FMS)
 - For dry or liquid product in transparent package
 - Detects headspace content
 - Oxygen, CO2, H20
 - Partial pressure
 - Instrument make can influence results
 - Sensitivity, reliability, testing speed

Method

- Laser passed through container headspace
- Laser frequency tuned to match internal absorption frequency of target molecule
 - Absorption is proportional to pressure
 - Amplitude is proportional to concentration
- Differential absorption and phase sensitive detection techniques to enhance sensitivity

Lighthouse Instruments, Inc.

Absorption Signal Example

Lighthouse Instruments, Inc.

RxPax, LLC, PDA Metro Chapter, May 2011

Pressure vs. Peak Width

Lighthouse Instruments, Inc.

O₂ Concentration vs. Signal Amplitude

Lighthouse Instruments, Inc.

- Specifications
 - Headspace analysis
 - O₂ inert gas environment
 - H_2O dry product
 - Vacuum < ~500 mbar absolute
 - Non-destructive, rapid (<1 s)
- Applications
 - Glass or transparent plastic packages
 - Vials, ampoules, syringes
 - On-line or off-line systems

Inert Gas Loss over Time 10 mL vial container

Predicted rise in p	ackage oxygen content	Time to reach pred (Da	icted oxygen levels lys)
Partial pressure (atm)	Oxygen concentration (% atm)	5 µm Hole	2 µm Hole
0	0	0	0
0.005	0.5	<1	4
0.01	1	1	8
0.02	2	3	17
0.04	4	6	36
0.08	8	13	81

Initial oxygen partial pressure = 0 Torr Hole path length assumed to be 0.1 mm

(Courtesy of Lighthouse Instruments, Inc., Charlottesville, VA)

RxPax, LLC, PDA Metro Chapter, May 2011

Vacuum Loss over Time 10 mL vial container

Time post package closing	Package headspace pressure (Torr)			
	5 µm Hole	2 µm Hole		
0 minutes	0	0		
1 minute	13	2.4		
5 minutes	63	12		
10 minutes	126	24		
60 minutes	756	144		
5 hours	760	720		
8 hours	760	760		

Initial headspace pressure = 0 Torr Viscous flow kinetics assumed

- hole path length 1.5 mm
- air viscosity 1.8 x 10⁻⁷ Pa·s

(Courtesy of Lighthouse Instruments, Inc., Charlottesville, VA) RxPax, LLC, PDA Metro Chapter, May 2011

Sterile Product Package Integrity Testing SUMMARY

- Package integrity related recalls continue to plague industry
- Current leak testing and package development practices are ineffective in preventing major recalls
- Commonly used dye ingress tests for CCIT are not considered 'best practices'

Sterile Product Package Integrity Testing **SUMMARY**

- 'Best practice' leak detection methods meet validation criteria of sensitivity and reliability
- Validation studies require appropriate positive and negative control test samples
- CCIT validation studies must reflect specific instruments, methods, packages, and products

Sterile Product Package Integrity Testing SUMMARY

- 'Best practice' leak test methods are supported by data in peer-reviewed publications
- Best practice methods examples include
 - Vacuum decay
 - High voltage leak detection
 - Laser-based Headspace Detection

Thank you