Evaluation and Implementation of Rapid Microbiological Methods

James Gebo, B.S., M.P.A., RM/SM(NRCM)
Senior Research and Development Scientist
Microtest Laboratories
May 6, 2013

Overview

- Initial RMM Research
 - Due diligence activities
- Developing a Business Case
 - RMM evaluation
 - Business case calculations
- Implementation Process
 - Risk Assessment
 - User Requirement Specifications
 - 3. Validation

Initial RMM Research

- Don't start with the technologies. Start by evaluating your current testing requirements.
- Take copious and detailed notes during the initial research.

- Ask yourself some basic questions.
 - What tests are you currently performing?
 - Bioburden
 - Endotoxin
 - Sterility
 - Mycoplasma
 - Custom tests (ELISA, cell based assays)

- Which of your products do you perform the tests on?
 - All products or some of the products
 - Raw materials
 - Environmental samples
- How often do you perform the test?
 - In process
 - Release
 - Consider timeframe (daily, weekly, monthly...)

Example Evaluation Matrix

Test	Product				
	Product 1	Product 2	Product 3	Product 4	
Bioburden In process		X(2)	X(26)	X(8)	
Bioburden release	X(4)				
Sterility		X(2)	X(26)	X(8)	
Endotoxin		X(2)	X(26)	X(8)	
ELISA				X(8)	

- Evaluate your data
 - Which tests do you perform the most?
 - Tests performed once or twice a year will likely have a lower benefit from an RMM.
 - Higher volume tests typically see bigger benefits.
 - What is the time to result for the high volume tests?
 - Rank the top 3-5 tests based on the time to result.
 Longest time to result first.

- Evaluate the available technologies
 - Rapid Microbiological Methods website
 - Dr. Miller: www.rapidmicromethods.com
 - Extensive list of currently available methods
 - News and other information regarding RMM
 - Manufacturer's websites
 - Familiarizing yourself with what they have to offer.
 - What the system consists of
 - What the system can do
 - Case studies / White Papers

- Match the RMM to the specific opportunity
 - Quantitative RMM: bioburden, environmental monitoring, endotoxin
 - Qualitative RMM: sterility, mycoplasma and absence/presence assays (USP <62>)
 - Identification RMM: microbial identifications

Due Diligence Activities

- Due diligence activities are performed to protect yourself
- Consider your business requirements
 - What is involved in bringing the system into your company?
 - Vendor audits
 - Implementation timeframe
 - Accounting requirements

- Consider the regulatory requirements
 - Has this technology been approved for use before?
 - How receptive are the regulators to this technology?
 - Will I have to submit changes to approved products to use this technology?
 - What is needed to validate the system?

- Obtain some technology training
 - Most vendors will be happy to have you on site to learn about their technology.
 - Most vendors have demonstration labs so you can get some hands on training.
 - How easy is it to learn the process?
 - How many steps? How difficult are they?
 - Is the process clearly defined?
 - Think of potential issues you may have at your facility.
 - How user friendly is the system?

Feasibility tests

- Comparison tests between current method and potential method.
 - See how the results compare.
 - Do both methods give the same result?
 - How is the reporting handled?
 - Does one system give a higher result than the other?
 - What is the quality of the result that is provided.
 - See if the new system can handle your sample.
 - Not all technologies can handle every sample type.

- Technology: MALDI ID systems
- Feasibility test:
 - 9 isolates: type strains, EM isolates and organisms that are particularly difficult to ID.
 - Identified on MicroSEQ (benchmark)
 - Submitted for MALDI identification
- Evaluation:
 - How many isolates could the MALDI ID?
 - If an ID was generated, how did it compare to the MicroSEQ?

Developing a Business Case

- Costs associated with RMMs can be significant.
 - Feasibility studies, validation activities, capital costs, maintenance
- Cannot make your decision on upfront costs.
 - Long-term costs savings and/or avoidances may make a technology feasible.
- Having a comprehensive business case will help support your decision.

- Determine the overall cost of the conventional method.
 - Direct costs can be directly associated with the method.
 - i.e. consumables, reagents, supplies, analyst labor time,
 PM/service contracts and calibrations
 - Indirect costs cannot be directly associated with the method.
 - i.e. overhead, hazmat disposal fees, utilities, storage costs

- Determine cost savings/avoidances
 - Reductions in test time / product release cycle
 - Reduction in OOS events / investigations
 - Reduced equipment needs
 - Reduced personnel needs
 - Increases in yield
 - Possibility of lowering inventory holdings

- Determine the overall cost of the RMM.
 - Perform the same evaluation as the conventional method.
 - Capital expenses for the initial investment.
 - Training costs for analysts
 - Qualification and validation costs
 - Regulatory costs (i.e. filing fees, meetings, etc.)

- Return on Investment
 - Ratio of money gained or lost on an investment relative to the amount of money invested.

$$ROI = \frac{([\Sigma \cos ts]c_{M} - [\Sigma \cos ts - \Sigma savings]_{RMM})}{RMMinvestment}$$

- Three outcomes of the calculation:
 - Positive number: investment gain
 - Negative number: investment loss
 - 0: no change

Payback Period

The length of time required to recover the cost of the initial investment.

$$PP = \frac{RMMinvestment}{([\Sigma Costs]_{CM} - [\Sigma Costs - \Sigma Savings]_{RMM})}$$

- Typically this is determined in years.
- Ideally a 3 year PP is desired.
- Depending on methodology and scale of the testing the PP can be longer or shorter.

- Net Present Value
 - Indicator of how much value an investment adds to the company.

$$NPV = \sum_{t=1}^{T} \frac{C_t}{\left(1+r\right)^t} - Investment$$
T= total time to consider
$$r = \text{discount rate (company's investment yield rate)} \qquad C_t = \text{cash amount at time t}$$

 C_t = cash amount at time t

- Three outcomes to this calculation
 - < 0: subtracts value from company
 - > 0: adds value to company
 - = 0: no change in company value

Step	Time	NPV Calculation
	1 yr.	$PV = \frac{\left[\sum Costs\right]_{CM} - \left[\sum Costs - \sum Savings\right]_{RMM^{1}}}{(1+DR)^{1}}$
	2 yr.	$PV = \frac{\left[\sum Costs\right]_{CM} - \left[\sum Costs - \sum Savings\right]_{RMM^{2}}}{(1+DR)^{2}}$
1	3 yr.	$PV = \frac{\left[\sum Costs\right]_{CM} - \left[\sum Costs - \sum Savings\right]_{RMM^{3}}}{(1+DR)^{3}}$
	4 yr.	$PV = \frac{\left[\sum Costs\right]_{CM} - \left[\sum Costs - \sum Savings\right]_{RMM^{4}}}{(1+DR)^{4}}$
	5 yr.	$PV = \frac{\left[\sum Costs\right]_{CM} - \left[\sum Costs - \sum Savings\right]_{RMM^{5}}}{(1+DR)^{5}}$
2	NP	$V = (\sum PV_1, PV_2, PV_3, PV_4, PV_5) - RMM$ Initial Investment

Implementation

- Risk Assessment
 - Various methods for risk assessment exist and any one or combination of them can be used.
 - Items to evaluate will vary
 - Failure points with the RMM
 - Products that will be evaluated
 - The types of results the RMM provides
 - How different the RMM is from the current method

- Develop the User Requirement Specification
 - This establishes the basic user expectations.
 - Provides documentation of what is required
 - Purpose
 - Technical and functional needs
 - Computer and software requirements
 - Safety requirements
 - Facility requirements
 - Regulatory requirements
 - Supplier requirements

- Design Qualification
 - Supplement to the IQ/OQ/PQ
 - Ideally performed prior to purchasing the RMM
 - Document that the intended system design is suitable for the intended purpose.
 - Verifies that all aspects of the URS are met.

- Create a Functional Design Specification
 - Details all the functions and requirements that need to be tested
 - Covers all aspects of equipment installation, operation and data handling.
 - The list is crucial to ensure that all items are appropriately tested.
 - All items contained in the FDS must be included in either the IQ, OQ or PQ.

- Installation Qualification
 - Establishes that the equipment is received as designed and is appropriately installed.
 - Can be performed by manufacturer or end user.
- Operational Qualification
 - Establishes that the equipment performs all of the desired functions reliably.
 - Can be performed by manufacturer or end user.
- If computers are required for the RMM, ensure they are included in the IQ and OQ.

- Performance Qualification
 - Establishes that the equipment performs its intended tasks as defined by the user.
 - PDA Technical Report No. 33 Evaluation, Validation and Implementation of Alternative and Rapid Microbiological Methods
 - USP <1223> Validation of Alternative Microbiological Methods
 - EP 5.1.6 Alternative Methods for Control of Microbiological Quality

Performance Qualification for Quantitative Assays				
	PDA TR#33	USP <1223>	EP 5.1.6	
Accuracy	\checkmark	$\sqrt{}$	\checkmark	
Precision	$\sqrt{}$	$\sqrt{}$	\checkmark	
Specificity	\checkmark	$\sqrt{}$	\checkmark	
Limit of Detection	$\sqrt{}$	$\sqrt{}$		
Limit of Quantification	\checkmark	$\sqrt{}$	\checkmark	
Linearity		V	\checkmark	
Range	$\sqrt{}$	$\sqrt{}$	\checkmark	
Ruggedness	$\sqrt{}$	V		
Robustness	\checkmark	\checkmark	\checkmark	
Equivalence	$\sqrt{}$		$\sqrt{}$	

Performance Qualification for Qualitative Tests				
	PDA TR#33	USP <1223>	EP 5.1.6	
Accuracy			\checkmark	
Precision			\checkmark	
Specificity	\checkmark	\checkmark	\checkmark	
Limit of Detection	\checkmark	\checkmark	\checkmark	
Ruggedness	\checkmark	\checkmark		
Robustness	\checkmark	\checkmark	\checkmark	
Equivalence	\checkmark		\checkmark	

Performance Qualification for Identity Tests				
	PDA TR#33	USP <1223>	EP 5.1.6	
Accuracy	\checkmark		\checkmark	
Precision	\checkmark		\checkmark	
Robustness			\checkmark	
Equivalence			\checkmark	

Equivalence Studies

- TR33 and EP 5.1.6 requirement for qualitative and quantitative methods.
- EP 5.1.6 requirement for ID methods.
- Demonstrates RMM is equal to or better than current method.

Equivalence Studies

- Using standardized microbiological cultures is the initial way to demonstrate this.
- It also needs to be demonstrated in the intended samples.
 - Can use actual products and/or sample matrices.
 - Perform the studies over a defined number of samples or period of time.
 - Run the RMM in parallel with the current method.
 - To evaluate absence/presence methods spiked samples must be included.

Questions???

Email Address:

James Gebo: jgebo@microtestlabs.com

