Stability of Parenteral Drug Products

Kenneth C. Waterman, Ph.D. FreeThink Technologies, Inc. ken.waterman@freethinktech.com

Outline

- General Overview
- Small vs. Large Molecule Stability
 - Small molecules
 - Proteins
- Small molecule chemistry
- Protein stability issues
- Packaging
- Accelerating Degradation

Background

- Marketed pharmaceutical products need to specify shelf-life under storage conditions
 - Assure safety
 - Assure potency/activity
 - Have no obvious visual changes
 - Precipitation
 - Discoloration
- Shelf-life set by what hits its limit first!

ICH Climatic Zones

Zone	Climate	Temperature	%RH
1	Temperate	21°C	45%
П	Subtropical	25°C	60%
Ш	Hot dry	30°C	35%
IVa	Hot, humid	30°C	65%
IVb	Hot, very humid	30°C	75%

Many parenterals are stored refrigerated: 5-8°C

Safety

- Degradation products of a drug are a potential safety risk
- Lower risk if degradants identified
 - Metabolites generally low risk
 - Qualification of degradants based on defaults (typically 0.2-0.5% of active) or safety data
 - Compounds with genotoxic risk are more tightly regulated
- Microbial count needs to remain acceptable at end of shelf-life
 - Monitor preservative levels

Potency

- Drug product needs to remain active at the end of its shelf-life (typically, >85% of label claim)
 - Loss of activity can be due to physical changes, e.g., precipitation
 - Loss can be due to chemical degradation
- Variability can play big role (may have differences between unit doses)

Small Molecule vs. Protein Stability

Small Molecules

- Loss of potency by any molecular change
- Only concerned with primary structure
- Most shelf-life limited by formation of low levels of degradants
- Arrhenius behavior in solution; modified Arrhenius (<u>ASAP</u>) in solid

Proteins

- Some bond changes may not impact activity
- Small changes in structure can have a large impact on activity
- Concerned with 1°, 2°, 3° and 4° structures
- Multiple reversible and irreversible steps make Arrhenius behavior difficult to see even in solution

Small Molecule Degradation Chemistry

- Hydrolysis
 - Esters, amides
- Oxidation
 - Amines, sulfides
- Reaction with excipients, impurities
 - Maillard (amines + sugars), reactions with peroxides, formaldehyde
- Rearrangements
 - Lactonization, lactamization

Hydrolyses Generally pH-Dependent

Oxidation: Classic Reaction with Oxygen

Oxidation of Electron-Rich Species

Antioxidants

- Oxidations can be controlled by antioxidants (e.g., BHT, BHA)
- Oxidation can be fast once antioxidant is consumed
 - Need to monitor antioxidant levels with time

Accelerated Aging: Small Molecule Solutions

- Chemical Stability (Including Antioxidants/Preservatives)
 - Generally follows Arrhenius behavior
 - Temperatures close to 100°C have low oxygen and may not be predictive
 - Change in pH with temperature may need to be accounted for
- Physical Stability
 - Precipitation can be accelerated using heat cycling
 - Loss of stabilizers to diffusion into packaging generally follows Arrhenius behavior, but complicated by solubility changes with temperature

Small Molecule Accelerated Stability

Same curvature independent of T

Accelerated Stability: Traditional Approach

60 Days at low or high T

ASAP: Accelerated Stability Assessment Program (Isoconversion)

ASAP approach: % degradant fixed at specification limit, time adjusted as needed

Accelerated Stability: Traditional Arrhenius Approach

0.002850.002900.002950.003000.003050.003100.003150.003200.003250.003300.003350.00340

1/T (K)

FreeThink Technologies, Inc

CP-456,773/60%RH₇

Accelerated Stability: ASAP Approach

Impact of Activation Energy on Accelerated Stability Studies

Weeks accelerated equivalent to 2 yrs at 30°C				
E _a (kcal/mol)	40°C	60°C	80°C	
12 Low activation energy	58	24	14	
29 Average activation energy	18	1	0.3	
39 High activation energy	6.5	0.1	0.01	

Accelerated Aging: Small Molecule Solids (Lyophiles)

Humidity Corrected Arrhenius Equation

humidity sensitivity factor

$$\ln k = \ln A - E_a/(RT) + B(\%RH)$$

Typically lyophiles are at <15% RH: equation still applies

Accelerated Stability Assessment Program (ASAP)

Note: RH dependence does not imply hydrolyses

Error Bars in Accelerated Aging

Example: Confidence Interval

For 2 year shelf life $(25^{\circ}C/60\%RH) = 95\%$

For 3 year shelf life $(25^{\circ}C/60\%RH) = 75\%$

Typical E_a and B values (n=60)

Protein Unfolding

Folded "native" protein: Active Form

Unfolded protein: Inactive Form

Protein Denaturation

4°-Structure

- Subunits dissociated
- Subunits disrupted

3°-Structure

- Covalent interactions disrupted between amino acid side chains
- Dipole-dipole interactions between amino acid side-chains with themselves and solvent disrupted
- Van der Waals interactions disrupted between nonpolar amino acid side-chains

2°-Structure

 loss of repeat patterns (α-helices, β-sheets)

1°-Structure

Not impacted

Protein Inactivation

$$K = k_1/k_{-1} = \exp(-\Delta G/RT)$$

$$K = 1$$
 when $T = T_m$

Packaging

Solids

- Mostly concerned with moisture protection;
 RH as a function of time
- Can be predicted accurately (ASAPprimeTM)

Solutions

- Packaging (container, closures) more integral to stability
- Concerned with materials leaching from packaging
- Concerned with loss of stabilizers into packaging
- Packaging can bring catalysts into solution (even glass)
 (even glass)

Conclusions

- Stability is a major part of drug product development
- Small molecule and large molecule drugs have different factors affecting their stability
- Accelerated stability is well-developed with small molecules, but remains challenging with large molecules
- Packaging must be considered in all stability assessments

