

PDA Global Headquarters Bethesda Towers, Suite 600 4350 East West Highway Bethesda, MD 20814 USA TEL: +1 (301) 656-5900 FAX: +1 (301) 986-0296

**PDA Europe gGmbH** Am Borsigturm 60 13507 Berlin Germany

OFFICERS

Chair Anil Sawant, PhD

Chair-Elect Melissa Seymour, MBA

Secretary Bettine Boltres, PhD

Treasurer Emma Ramnarine, PhD

Immediate Past Chair

Susan Schniepp President & CEO

Glenn E. Wright

#### DIRECTORS

Lisa Bennett

Cristiana Campa, PhD Andrew Chang, PhD Cylia Chen Ooi, MA

Mirko Gabriele, PhD

Marc Glogovsky, MS

Andrew Hopkins

Stephan O. Krause, PhD

Ivy Louis, MBA

Amy McDaniel, PhD Brigitte Reutter-Haerle

Osamu Shirokizawa

30 November 2024

Desmond G. Hunt, Principal Scientific Liaison 12601 Twinbrook Parkway Rockville, MD 20852

Reference: USP Chapter <1660> Evaluation of the Inner Surface Durability of Glass Containers

Dear Sir,

PDA appreciates the opportunity to provide feedback to the USP Packaging and Distribution Expert Committee on the proposed revision to *Chapter <1660> Evaluation of the Inner Surface Durability of Glass Containers*. In our attached comments, PDA offers specific comments and feedback that we believe will be helpful in the further development of this important chapter.

PDA is a non-profit international professional association of more than 10,000 individual members who are industry professionals having an interest in fields of pharmaceuticals, biological, device manufacturing, and quality. Our comments have been prepared by a committee of PDA members with expertise in the areas covered in this chapter on behalf of PDA's Scientific Advisory Board.

If you have any questions, please do not hesitate to contact me via email at wright@pda.org.

Sincerely,

Glenn E. Wright President and CEO

CC: Jessie Lindner, PDA



# PDA (Parenteral Drug Association®) Comments to USP General Chapter <1660>: Evaluation of the Inner Surface Durability of Glass Containers

### **General Comments**

#### Comment(s)

PDA agrees with the general expanded scope and information of USP <1660> and feels the information is insightful and helpful to the end user. PDA recommends updating the scope so that the phrasing emphasizes the value of evaluation of the inner surface durability, verses the glass container manufacturing information. Additionally, it is recommended to update the language clarifying for readers that this Chapter is primarily intended for drug product manufactures, since stability is a product specific requirement.

The proposed revisions to USP <1660> appears to have adopted an expanded definition of the term "durability" to include mechanical reliability. For example, the entirety of Section 6 (Factors that influence container durability during filling operations) deals with glass handling-related topics that can introduce strength-limiting defects into containers. While this is generally useful information, a discussion of these topics is beyond what should be the intended scope of this guidance document. It is recommended that the proposed revisions to USP <1660> be written in a way that solely focuses on inner surface durability within the context of chemical stability – e.g., methods for evaluating hydrolytic resistance, glass delamination risk, etc. Implementing this recommendation would clarify the intent of the guidance, thereby improving its overall usability for the end user of the document.

## SECTION 3. GLASS COMPOSITION

Table 1. General Range of Chemical Composition and Coefficient of Mean Linear Thermal Expansion for Quarts, Borosilicate, Aluminosilicate, and Soda-Lime-Silica Glass

| Page<br>Number | Reference Text                                                                                                   | Proposed Change                                                    | Rationale                                                                                                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 7-8         | Table 1. General Range of Chemical<br>Composition and Coefficient of Mean<br>Linear Thermal Expansion for Quartz | PDA proposes updating Table 1.<br>*See below for Table 1 proposal. | Table 1 does not include all<br>borosilicate and soda-lime-silica<br>glass types currently used in the<br>market. In addition, coloring agents<br>are not considered as a significant<br>proportion of amber glass<br>composition. |

| <ul> <li>The new proposal for Table 1:</li> <li>Is aligned with the revised decision tree submitted by PDA in comments regarding the update of USP &lt;660&gt;</li> <li>Covers the glass compositions currently used in the market</li> <li>Eliminates some incorrect ranges and adds ranges where appropriate</li> <li>Provides a comprehensive overview of composition ranges as well as important physical and chemical properties relevant for the use of glass as primary packaging material</li> <li>Demonstrates also the differences between the 'subfamilies' of the respective glass types, e.g. differentiation tubular and molded</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

\* Table 1 General Range of Chemical Composition and Coefficient of Mean Linear Thermal Expansion for Quarts, Borosilicate, Aluminosilicate, and Soda-Lime-Silica Glass Proposal:

|                                                                                          | Composition (Approx. Weight %) |                                                                                                          |                                        |                              |                                    |                                           |                                      |                                      |  |
|------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--|
| Glass Families / Identity                                                                | Fused Quartz<br>Tubular        | High<br>Borosilicate<br>"Tubular 33"                                                                     | Medium<br>Borosilicate<br>"Tubular 51" | Borosilicate<br>Moulded      | Alumino -silicate<br>Tubular       | Low Borosilicate<br>"Tubular 70"          | Soda Lime<br>Silicate<br>Tubular     | Soda Lime<br>Silicate<br>Moulded     |  |
| Network Former SiO <sub>2</sub>                                                          | >99.9                          | 80 - 82                                                                                                  | 65 - 75                                | 65 - 70                      | 68 - 80                            | 70 - 74                                   | 60-70                                | 69-75                                |  |
| Network Former <b>B</b> <sub>2</sub> <b>O</b> <sub>3</sub>                               | -                              | ≥ 12                                                                                                     | ≥ 8                                    | 9-13                         | -                                  | ≥ 5                                       | < 6                                  | 0-1                                  |  |
| Network Intermediates Al <sub>2</sub> O <sub>3</sub>                                     | -                              | 2                                                                                                        | 5-9                                    | 3-7                          | 8-12                               | 4-7                                       | < 8                                  | 0.5-4                                |  |
| Sum Network Former/Intermediates                                                         | 99                             | 97-92                                                                                                    | 92-78                                  | 90-77                        | 92-76                              | 86-79                                     | 84-74                                | 80-69                                |  |
| Type - Surface test - no interior processing,<br>coating, treatment                      | Туре І                         | Type I<br>Converting<br>Influences                                                                       | Type I<br>Converting<br>Influences     | Туре І                       | Type I<br>Converting<br>Influences | Type I or III<br>Converting<br>Influences | Type III<br>Converting<br>Influences | Type III                             |  |
| Type - Surface test - interior processing,<br>coating, treatment                         | Type I<br>Limit I/II           | Type I<br>Limit I/II                                                                                     | Type I<br>Limit I/II                   | Type I<br>Limit I/II         | Type I<br>Limit I/II               | Type I<br>Limit I/II or Type<br>III       | Type II<br>Limit I/II or<br>Type III | Type II<br>Limit I/II or<br>Type III |  |
| Fluxes, Sum of Alkali Metal Oxides ( <b>Na<sub>2</sub>O</b> ,<br><b>K<sub>2</sub>O</b> ) | -                              | 3-5                                                                                                      | 6-9                                    | 8-11                         | 8-15                               | 10-14                                     | 12-17                                | 12-16                                |  |
| Property Modifiers, Sum of Alkaline Earth<br>Oxides ( <b>MgO, CaO, BaO</b> )             | -                              | 0 - 1                                                                                                    | 0.5 - 2                                | 2-4                          | 3-10                               | 4-9                                       | 1-12                                 | 10-15                                |  |
| Sum of Alkali Metal and Alkaline Earth                                                   | 0                              | 3-6                                                                                                      | 6-11                                   | 10-15                        | 11-20                              | 14-23                                     | 13-29                                | 22-31                                |  |
| Type - Glass Grains                                                                      | NA - Identity<br>Req           | Туре І                                                                                                   | Type I                                 | Туре I                       | NA - Identity Req                  | Type I or III                             | Type III                             | Type III                             |  |
| Testing                                                                                  |                                |                                                                                                          |                                        | Surface Tes                  | t & Identity                       |                                           |                                      |                                      |  |
| Spectral Transmission - Amber                                                            | NA                             | NA                                                                                                       | Yes – Amber<br>Type I                  | Yes – Amber<br>Type <i>I</i> | NA                                 | Yes - Amber Type<br>I or III              | Yes - Amber<br>Type III              | Yes - Amber<br>Type III              |  |
| Extractables                                                                             | NA- Identity<br>Required       | ICH-Q3D & USP 1160                                                                                       |                                        |                              |                                    |                                           |                                      |                                      |  |
| CTE (10 <sup>-7</sup> /K)                                                                | 5.5                            | <u>32 - 33</u> <u>48 - 54</u> <u>58 - 65</u> <u>60 - 70</u> <u>60 - 70</u> <u>70 - 95</u> <u>71 - 93</u> |                                        |                              |                                    |                                           | 71-93                                |                                      |  |
| Fining Agents                                                                            | No                             | Varies by Manufacturer (Cl, F, As, Sn, Fe, Sb, S, Ce)                                                    |                                        |                              |                                    |                                           |                                      |                                      |  |

| Page<br>Number | Reference Text                                                                                                                                                                                                                                                                 | Proposed Change                                                                                                                                                                                                                                                                           | Rationale                                                                                                                                                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 8           | "The refractory bricks lining the furnace<br>deteriorate with time and<br>must be replaced. Worn bricks can<br>contribute to cosmetic defects such as<br>stones (inclusions in the glass) that<br>become incorporated into the<br>molded glass containers or glass<br>tubing." | PDA proposes to remove the statement.                                                                                                                                                                                                                                                     | It is not clear why this statement is<br>needed in a guidance chapter on<br>evaluating inner glass surface<br>durability. By removing text, it could<br>help limit reader confusion.            |
| Pg 8           | "Glass tubes of a specific diameter are<br>formed from a stream of molten glass<br>that exits the furnace, is cooled, and is<br>sectioned into standard lengths."                                                                                                              | PDA recommends updating the<br>statement to:<br>"Glass tubes of a specific diameter <b>and</b><br><b>wall thickness</b> are formed from a<br>stream of molten glass that exits the<br>furnace, is cooled, and is sectioned<br>into standard lengths."                                     | By incorporating this minor change, it<br>will make the description more<br>complete and aid in reader<br>understanding.                                                                        |
| Pg 8           | "Gas flames are used to soften tubing<br>glass to form the neck, to melt the glass<br>to form the base of ampules or vials,<br>and to separate the container from the<br>glass tube."                                                                                          | PDA proposes updating the statement<br>to:<br>"Gas flames are used to soften tubing<br>glass to form the <b>flange</b> , neck, <b>and</b><br><b>shoulder regions</b> to melt the glass to<br>form the base of ampules or vials, and<br>to separate the container from the glass<br>tube." | By incorporating this minor change, it<br>will make the description more<br>complete and aid in reader<br>understanding.                                                                        |
| Pg 8           | "Under certain time-temperature<br>conditions, the glass can phase<br>separate during forming, creating                                                                                                                                                                        | PDA suggests removing this statement.                                                                                                                                                                                                                                                     | Phase separation has not been linked<br>to inner surface chemical heterogeneity<br>which is the scope of this Chapter.<br>Would suggest removing statement to<br>avoid reader confusion because |

|      | nonhomogeneous surface chemistry<br>on the interior of the bottom of the<br>container."                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    | content is not relevant to scope and could lead to reader confusion.                                                                                                                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 8 | "The temperatures used for subsequent<br>steps are lower than those used for<br>forming and annealing (see <i>Table 2</i> ) and<br>do not pose an additional risk to the<br>chemical durability of the glass from<br>phase separation or volatilization." | PDA recommends removing reference<br>to phase separation:<br>"The temperatures used for subsequent<br>steps are lower than those used for<br>forming and annealing (see <i>Table 2</i> ) and<br>do not pose an additional risk to the<br>chemical durability of the glass from<br>volatilization." | Phase separation has not been linked<br>to inner surface chemical heterogeneity<br>which is the scope of this Chapter.<br>Would suggest removing statement to<br>avoid reader confusion because<br>content is not relevant to scope and<br>could lead to reader confusion. |

## **SECTION 4.1 Container Treatments**

| Page<br>Number | Reference Text                                                                                                                                                                                    | Proposed Change                                                                                                                                                                                                                                                                                          | Rationale                                                                                                                                                                                                                                                                                                                   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 9           | "If the glass breaks, it does so with an<br>explosive character, with the size of the<br>glass fragments produced decreasing<br>as the localized tensile stresses in the<br>glass increase (1)."  | PDA recommends removing this statement.                                                                                                                                                                                                                                                                  | This Chapter concerns methods for<br>evaluating inner surface durability.<br>Information on chemical strengthening<br>to increase breakage resistance seems<br>like it is out of scope for this Chapter<br>and could lead to reader confusion.                                                                              |
| Pg 9           | "Although removing sodium ions from<br>the surface reduces the propensity for<br>pH shift, the treatment also removes<br>structural elements, leaving a thin<br>silica-rich inner surface layer." | PDA recommends updating the<br>statement to the following:<br>"Although removing sodium ions from<br>the surface reduces the propensity for<br>pH shift, <b>in the case of tubular vials</b> ,<br>the treatment also removes structural<br>elements, leaving a thin silica-rich inner<br>surface layer." | The statement only applies to tubular<br>vials, not molded. Molded composition<br>is uniform for bottom and side wall,<br>which is not the case for tubular vials.<br>For molded, ammonium sulfate<br>treatment happens just after forming,<br>at about 500°C-650°C. For tubular, the<br>treatment happens inside annealing |

|       | <ul> <li>"The hot treatment has the following characteristics:</li> <li>Thickness of 20–80 coating thickness units (CTU), approximately 3–11 µg/cm2 (120–</li> </ul>                                                                                                                 | PDA suggests updating and expanding<br>the statement to the following:<br>"The hot treatment has the following<br>characteristics:                                                                                                                                                                                                                                                                                                     | lehr, as tubular vials are not hot enough<br>while ammonium sulfate introduced.<br>By updating the statement as<br>recommended, it improves technical<br>accuracy and clarity for the reader.<br>By making the change from <10 CTU to<br><20 CTU , this will take into account the<br>specifications due to the detection limit<br>of the equipment and the absence of<br>zone between 10 and 20 CTU. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 10 | <ul> <li>200 Å) of tin oxide over the side<br/>wall, which is the area most<br/>exposed to friction with other<br/>containers</li> <li>Thickness of &lt;10 CTU at the level of<br/>the neck finish, which is not<br/>exposed to abrasion with other<br/>vials or bottles"</li> </ul> | <ul> <li>Thickness of 20–80 coating thickness units (CTU), approximately 3–11 µg/cm2 (120–200 Å) of tin oxide over the side wall, which is the area most exposed to friction with other containers</li> <li>Thickness of &lt;20 CTU at the level of the neck finish, which is not exposed to abrasion with other vials or bottles. An alternative treatment could be applied if the performance is equivalent or superior."</li> </ul> | The addition of the last statement<br>allows for the possibility to use<br>alternative hot treatments and aligns to<br>the language used for the cold<br>treatment recommendation.                                                                                                                                                                                                                    |

## SECTION 7.2 Glass Particles and Flakes

Table 3. Source of Glass particles and flakes

| Page<br>Number | Reference Text                                                                                                                                                                                      | Proposed Change                                                                                        | Rationale                                                                                                                                                                                                                                                                        |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pg 13 -<br>16  | Table 3. Source of Glass Particles<br>and Flakes                                                                                                                                                    | PDA proposes updating formatting<br>to horizonal or bullet format.<br>*See below for Table 3 proposal. | The current layout for Table 3 is<br>difficult to read because only 1-2<br>words are found per line and gaps<br>exist between bulleted items. PDA's<br>suggestion is to reformat table to<br>allow more information to be<br>viewable on one page to improve<br>ease of reading. |  |
| Pg 16          | <ul> <li>Sodalime is more<br/>susceptible than molded;<br/>molded is more susceptible<br/>than tubular on the basis of<br/>glass composition (i.e., alkali<br/>total weight percentage)"</li> </ul> | PDA suggests removing statement<br>from Table 3.<br>*See below for Table 3 proposal.                   | Statement contains technical<br>inaccuracies, (i.e., molded is not<br>more susceptible than tubular<br>glass). Removing statement would<br>eliminate technical inaccuracy.                                                                                                       |  |

| Classification                                                                                                       | Mechanism                                                                                                                                                                     | Description                                                        | Frequency                                                                | Location<br>within<br>container                                       | Composition                                                                                      | Non-Exhaustive<br>Examples                                                                                                                                                                                                                                                                                          | Corrective Action                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glass Particles                                                                                                      | Glass breaks or<br>fractures due to<br>the application of<br>stress                                                                                                           | Subvisible to<br>Visible                                           | Sporadic                                                                 | N/A                                                                   | Composition of<br>Container Glass                                                                | <ul> <li>Sectioning of glass tube<br/>during manufacturing<br/>process</li> <li>Breakage of containers<br/>during filling/capping</li> </ul>                                                                                                                                                                        | <ul> <li>Work with glass<br/>manufacturer to<br/>improve sectioning<br/>process</li> <li>Reduce line pressure</li> <li>Ensure filling line<br/>tolerances are matched<br/>to container</li> </ul>                                                                |
| Glass Particles                                                                                                      | Abrasion from<br>blunt frictive<br>damage                                                                                                                                     | Subvisible to<br>Visible                                           | Sporadic                                                                 | N/A                                                                   | Composition of<br>Container Glass                                                                | <ul> <li>Glass to glass contact<br/>on filling lines</li> <li>Glass to glass contact<br/>during transit</li> </ul>                                                                                                                                                                                                  | <ul> <li>Adjust filling line to<br/>reduce glass-to-glass<br/>and glass-to-metal<br/>contact</li> <li>Adjust filling line</li> <li>Adjust secondary<br/>packaging/shipment<br/>method/carrier</li> </ul>                                                         |
| Precipitation of<br>dissolved glass<br>(Inorganic<br>Insoluble<br>Particle or<br>Glass elements)                     | Glass elements<br>leached from the<br>container exceed<br>solubility. Higher<br>potential in<br>alkaline pH<br>solutions.                                                     | Subvisible to<br>Visible                                           | Consistent<br>across all<br>containers<br>in lot                         | May be in<br>solution<br>and/or<br>nucleated on<br>container<br>walls | Glass elements<br>in ratios that<br>differs from the<br>composition of<br>the container<br>glass | <ul> <li>Hydrated silicate<br/>particles that can<br/>contain Al, Ba, Ca, Mg,<br/>etc. (e.g.,<br/>MgAl<sub>x</sub>Si<sub>y</sub>OH<sub>z</sub><br/>Temperature, time,<br/>high pH solutions, or<br/>other accelerated<br/>processing may affect<br/>solubility e.g.<br/>sterilization, 60C<br/>storage.)</li> </ul> | <ul> <li>Work with glass<br/>manufacturer to test<br/>alternative glass<br/>compositions/coatings</li> <li>Note: Inorganic<br/>insoluble particles can<br/>form with the Drug /<br/>API / Buffer only<br/>without interaction<br/>with the container.</li> </ul> |
| Precipitation<br>from container-<br>drug<br>interaction<br>(Drug / API /<br>Buffer with<br>Container<br>interaction) | Leached glass<br>elements interact<br>with drug<br>formulation<br>(buffer and/or<br>API) to form<br>complexes of<br>limited solubility<br>that precipitate.<br>Note: This can | Subvisible<br>(Haze low<br>level - light<br>scattering)<br>Visible | Consistent<br>across all<br>containers<br>in lot and<br>between<br>SKU's | May be<br>suspended<br>and/or<br>nucleated on<br>container<br>walls   | Particles<br>contain both<br>glass elements<br>and<br>components of<br>the formulation           | <ul> <li>Al-phosphate complex</li> <li>Barium sulfate complex<br/>(e.g. Ba<sub>2</sub>SO<sub>4</sub>)</li> <li>Iron Sucrose<br/>agglomeration</li> </ul>                                                                                                                                                            | <ul> <li>Work with glass<br/>manufacturer to test<br/>alternative glass<br/>compositions/coatings</li> <li>Changes needed to<br/>process or chemistry of<br/>Drug/API/Buffer</li> </ul>                                                                          |

# \*Table 3. Source of Glass Particles and Flakes Proposal:

| Delaminated<br>Glass flakes<br>(lamellae) due<br>to container<br>near surface<br>region<br>chemistry<br>changes in<br>combination<br>with drug<br>formulation | occur with<br>Drug/API/Buffer<br>and any container<br>closure<br>component.<br>Interaction of low<br>durability<br>changed<br>durability near<br>surface region of<br>container with<br>formulation,<br>resulting in silica<br>rich reaction<br>zones that are<br>eventually<br>detached and<br>released to | Subvisible to<br>visible<br>flexible<br>flakes (up to<br>several<br>hundred<br>microns) | Sporadic                                    | Solution or<br>surface,<br>originates<br>from the<br>strongly<br>heated<br>container<br>regions | Alkali-depleted<br>silica rich<br>flakes | <ul> <li>Phosphate buffered<br/>solutions</li> <li>Carbonate buffered<br/>solutions</li> <li>Solutions with salts</li> <li>Any solution especially<br/>corrosive to low<br/>durability region (acid,<br/>base, or neutral). The<br/>rate of lamellae<br/>production is<br/>dependent on the rate<br/>of corrosion.</li> </ul> | <ul> <li>Work with glass<br/>manufacturer on<br/>converting conditions</li> <li>Select glass containers<br/>with uniform surface<br/>chemistry</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glass flakes due<br>to poor glass<br>chemistry /<br>drug<br>formulation<br>incompatibility                                                                    | solution<br>Interaction of<br>near surface<br>region of entire<br>container surface<br>in contact with<br>formulation,<br>resulting in silica<br>rich reaction<br>zones that are<br>eventually<br>detached and<br>released into<br>solution                                                                 | Subvisible to<br>visible<br>flexible<br>flakes (up to<br>several<br>hundred<br>microns) | Uncommon<br>for<br>Pharmaceut<br>ical Glass | All liquid<br>contact<br>surface area<br>equally<br>prone.                                      | Alkali-depleted<br>silica rich<br>flakes | <ul> <li>Aggressive<br/>formulations in<br/>combination with<br/>container glass<br/>chemistry (e.g., high pH<br/>above pH 11 are<br/>aggressive to high silica<br/>glasses, low pH below 4<br/>are aggressive to soda-<br/>lime.)</li> </ul>                                                                                 | <ul> <li>Work with glass<br/>manufacturer on<br/>alternative glass<br/>compositions/coatings<br/>or surface treatments</li> </ul>                         |

## 7.3 Glass Delamination

Table 4. Factors Influencing the Chemical Durability of the Inner Surface of Glass Containers

| Page   | Reference Text | Proposed Change | Rationale |   |
|--------|----------------|-----------------|-----------|---|
| Number | Reference lext | Floposed Change | Rationate | l |

|       | "Container Processing and Storage                            | PDA proposes to add a bullet point to                   | Due to the implementation of ion-        |
|-------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|
|       |                                                              | the Container Processing and Storage                    | exchange surface treatment in general,   |
|       | <ul> <li>Post-formation treatments:</li> </ul>               | column.                                                 | this method should also be included      |
|       | Annealing                                                    |                                                         | here to aid in reader understanding.     |
|       | Ammonium sulfate                                             | "Container Processing and Storage                       |                                          |
|       | Washing                                                      |                                                         |                                          |
|       | Depyrogenation                                               | <ul> <li>Post-formation treatments:</li> </ul>          |                                          |
| D-17  | <ul> <li>Storage and transportation</li> </ul>               | Annealing                                               |                                          |
| Pg 17 | conditions                                                   | Ammonium sulfate                                        |                                          |
|       | Temperature and high humidity                                | Washing                                                 |                                          |
|       | variation"                                                   | Depyrogenation                                          |                                          |
|       |                                                              | <ul> <li>Storage and transportation</li> </ul>          |                                          |
|       |                                                              | conditions                                              |                                          |
|       |                                                              | Temperature and high humidity                           |                                          |
|       |                                                              | variation                                               |                                          |
|       |                                                              | Ion exchange treatment"                                 |                                          |
|       | "Drug Product Formulation,                                   | PDA proposes to add a bullet point to                   | The added bullet point clarifies the     |
|       | Processing, and Storage                                      | Drug Product Formulation, Processing,                   | potential importance of fill volume. The |
|       |                                                              | and Storage column.                                     | surface area to volume ratio is a        |
|       | <ul> <li>Drug substance</li> </ul>                           |                                                         | generally important factor in glass      |
|       | Formulations:                                                | "Drug Product Formulation,                              | corrosion, especially in low fill        |
|       | Acetate, citrate, phosphate                                  | Processing, and Storage                                 | applications.                            |
|       | buffers                                                      |                                                         |                                          |
|       | Sodium salts of organic acids                                | <ul> <li>Drug substance</li> </ul>                      |                                          |
| Pg 17 | (e.g., gluconate, malate,<br>succinate, tartrate, carbonate) | Formulations:                                           |                                          |
| Fg I/ | High ionic strength (e.g., >0.1 M of                         | Acetate, citrate, phosphate                             |                                          |
|       | alkaline salts                                               | buffers                                                 |                                          |
|       | Complexing agents (e.g., EDTA)                               | Sodium salts of organic acids (e.g., gluconate, malate, |                                          |
|       | High pH (e.g., >8.0)                                         | succinate, tartrate, carbonate)                         |                                          |
|       | Terminal sterilization                                       | High ionic strength (e.g., >0.1 M of                    |                                          |
|       | <ul> <li>Labeled storage conditions</li> </ul>               | alkaline salts                                          |                                          |
|       | (refrigerated or controlled room                             | Complexing agents (e.g., EDTA)                          |                                          |
|       | temperature)                                                 | High pH (e.g., >8.0)                                    |                                          |
|       | Shelf life"                                                  | Terminal sterilization                                  |                                          |

| <ul> <li>Labeled storage conditions<br/>(refrigerated or controlled room<br/>temperature)</li> <li>Shelf life</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------|
| Ratio of container surface     area to drug product fill     volume"                                                     |

## SECTION 8.1 Critical Parameters in the Autoclave Procedure

| Page<br>Number | Reference Text                                                                                                                                                | Proposed Change                                                                                                                                                                                                                                | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 17          | "Figure 1. A summary of factors that<br>influence titration results including<br>indications of their criticality and the<br>difficulty of controlling them." | PDA proposes to relocate Figure 1 to Section 8.3 Surface Glass Test.                                                                                                                                                                           | Figure 1 contains information that is<br>pertinent to the material in section 8.3.<br>By relocating the Figure, it will aid in<br>reader understanding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pg 18          | "The calibration (qualification and<br>validation) of temperature and pressure<br>should be carried out on a regular<br>basis, at least once per year."       | PDA recommends updating statement<br>as follows:<br>"The calibration (qualification and<br>validation) of temperature and pressure<br>should be carried out on a regular<br>basis, <b>as appropriate based on risk</b><br><b>assessment.</b> " | Updating the statement as<br>recommended, will align the Chapter's<br>recommendations with those<br>demonstrated by <i>ISO</i> 15378:2015<br><i>Primary Packaging Materials for</i><br><i>Medicinal Products - Particular</i><br><i>Requirements for the Application of ISO</i><br>9001:2008, With Reference to Good<br><i>Manufacturing Practice (GMP)</i><br>that comprehensive re-validation (e.g.,<br>every 5-10 years) is sufficient if other<br>actions and premeasures are involved<br>in standard testing (e.g., control cards,<br>inclusion of reference/standard sample<br>for each measurement, etc.). A re-<br>validation plan should exist based upon<br>a risk-based validation strategy. |

|  | By allowing firms to base the frequency       |
|--|-----------------------------------------------|
|  | of calibration on risk-based analysis,        |
|  | firms will be given the flexibility to arrive |
|  | at different outcomes for each                |
|  | laboratory, depending on site specific        |
|  | factors and quality risk management           |
|  | (QRM) requirements.                           |

# 8.2 Critical Parameters in the Heating Cycle Procedure

| Page<br>Number | Reference Text                             | Proposed Change                      | Rationale                                 |
|----------------|--------------------------------------------|--------------------------------------|-------------------------------------------|
| Pg 18          | "Titration                                 | PDA recommends relocating content to | Titration is not included in the heating  |
|                |                                            | Section 8.3 Surface Glass Test.      | cycle procedure of autoclave but after    |
|                | Variations in titration can be reduced by  |                                      | this step. This content would be better   |
|                | using automatic titrators. To increase     |                                      | suited to be relocated in the 8.3 Surface |
|                | the reproducibility of the titration       |                                      | Glass Test section.                       |
|                | results, personnel should be               |                                      |                                           |
|                | well-trained. Observation of the color     |                                      |                                           |
|                | change is subjective and should be         |                                      |                                           |
|                | facilitated by using standard              |                                      |                                           |
|                | conditions, such as the same set of        |                                      |                                           |
|                | lighting and background color              |                                      |                                           |
|                | conditions. Also, the angle of             |                                      |                                           |
|                | observation should be kept constant,       |                                      |                                           |
|                | and if possible, the impact of daylight    |                                      |                                           |
|                | should be controlled. As the glass         |                                      |                                           |
|                | burettes can produce relatively big        |                                      |                                           |
|                | droplets, the burette tips can be          |                                      |                                           |
|                | considered to be connected to a            |                                      |                                           |
|                | micropipette to obtain smaller and         |                                      |                                           |
|                | more controllable droplets."               |                                      |                                           |
| Pg 18          | "As the glass burrettes can produce        | PDA proposes to update the statement | As currently written, the sentence        |
| _              | relatively big droplets, the burrette tips | as follows:                          | could be misinterpreted to mean that      |

| can be considered to be connected to a<br>micropipette to obtain smaller and<br>more controllable droplets." | "As the glass burrettes can produce<br>relatively big droplets, <b>consider use of</b><br><b>more dilute titrants, or burrettes (e.g.</b><br><b>micropipette) which can produce</b> | one is putting a glass burrette tip on a<br>micropipetter. The tip (size and<br>material) drives the drop size, not the<br>pipette.      |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                              | smaller and more controllable drops."                                                                                                                                               | By updating the statement as<br>proposed, the reader is provided<br>considerations that should be<br>addressed during method validation. |

# 8.3 Surface Glass Test

| Page<br>Number | Referenced Text                                                                                                                                                                                           | Proposed Change                                                                                                                                                                                                                                                                | Rationale                                                                                                                                                                    |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 19          | "This test provides an indication of<br>inner surface chemical durability but<br>does not appear to provide a clear,<br>direct correlation with the propensity to<br>form glass flakes or to delaminate." | PDA suggests updating the statement<br>to the following:<br>"This test provides an indication of<br>inner surface chemical durability but<br>does not <b>necessarily</b> provide a clear,<br>direct correlation with the propensity to<br>form glass flakes or to delaminate." | As currently written, it seems to imply<br>there is a lack of<br>knowledge/information available<br>regarding the test. By updating the<br>statement it will clarify intent. |

# 8.4 Predictive Screening Strategies

| Page<br>Number | Referenced Text                                                                                                                                             | Proposed Change                                                                                                                                                                                           | Rationale                                                                                                                                                          |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 19          | "A low value is not always an indicator<br>of a durable inner surface if the results<br>are obtained using surface treatments<br>(e.g., ammonium sulfate)." | <ul><li>PDA recommends updating the statement to the following:</li><li>"A low value is not always an indicator of a durable inner surface if the results are obtained using surface treatments</li></ul> | The statement only applies to tubular<br>vials, not molded. Molded composition<br>is uniform for bottom and side wall,<br>which is not the case for tubular vials. |

| (e.g., ammonium sulfate), <b>in the case</b><br>of tubular vials." | For molded, ammonium sulfate<br>treatment happens just after forming,<br>at about 500°C-650°C. For tubular, the<br>treatment happens inside annealing<br>lehr, as tubular vials are not hot enough<br>while ammonium sulfate introduced. |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | By updating the statement as recommended, it improves technical accuracy and clarity for the reader.                                                                                                                                     |

## 9. EXTRACTABLE ELEMENTS

Table 9. Extraction Solutions and Conditions

| Page<br>Number | Referenced Text              | Proposed Change                                                                                                                                        | Rationale                                                                                               |
|----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Pg 21-<br>22   | "Temperature (⁰)<br>121 ± 1" | PDA proposes to update Temperature<br>recommendation for purified water in<br>60 min in autoclave.<br>"Temperature ( <sup>0</sup> )<br><b>122</b> ± 1" | By making the proposed update to the<br>temperature range to better align with<br>autoclave parameters. |

## **10. SPECTRAL TRANSMISSION**

| Page   | Referenced Text                                                                                                                                                   | Proposed Change                                   | Rationale                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Number |                                                                                                                                                                   |                                                   |                                                                                                           |
| Pg 22  | "Typically, iron and titanium are used in<br>currently marketed amber borosilicate<br>glass, and iron and manganese are<br>used in amber soda-lime-silica glass." | PDA recommends updating the statement as follows: | Both iron and titanium or iron and<br>manganese are used in amber<br>borosilicate glass. Iron, sulfur and |

|       |                                                                                                                                                                                                                | "Typically, iron and titanium <b>or iron and</b><br><b>manganese</b> are used in currently<br>marketed amber borosilicate glass, and<br>iron, <b>sulfur, and carbon</b> are used in<br>amber soda-lime-silica glass." | carbon are used for amber soda-lime-<br>silica glass, not iron and manganese.<br>The recommended update will make<br>the statement technically accurate and<br>will improve reader understanding.                                                                                                                                                                                                                                                                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pg 22 | "The wall thickness of tubular<br>containers is relatively constant on the<br>side wall. The wall thickness for a<br>particular container type and size can<br>be used to calculate spectral<br>transmission." | PDA suggests the following:<br>"The wall thickness for a particular<br>container type and size can be used<br>to calculate spectral transmission."                                                                    | Historically, molded amber glass<br>bottles and vials typically had minimum<br>glass thicknesses which would align<br>with a 10% maximum<br>transmission. However, in recent years,<br>driven by market requirements and<br>sustainability initiatives, lighter weight<br>molded vials are available which<br>exceed the 10% threshold. Thus, a<br>variable, or stepped scale for maximum<br>transmission of amber, molded glass<br>containers is also necessary. |

#### About PDA Regulatory Commenting

PDA submits comments to regulatory agencies and pharmacopeial bodies when draft guidance or legislation is issued for public comment. Members of the PDA community work together to provide feedback regarding the content to ensure a broad industry perspective is presented and considered for inclusion or revision of the draft document.

PDA Regulatory Commenting documents are consensus documents, prepared by member-driven teams (listed below) comprised of content experts, including scientists and engineers working in the pharmaceutical/biopharmaceutical industry, regulatory authorities and academia.

The final working draft is reviewed by the PDA Advisory Board(s) aligned to the PDA Commenting Effort subject matter. PDA's four Advisory Boards are classified as Science, Advanced Therapy Medicinal Products, Biopharmaceuticals, and Regulatory Affairs and Quality.

While PDA goes to great lengths to ensure each commenting document is of the highest quality, all readers are encouraged to contact PDA about any scientific, technical, or regulatory inaccuracies, discrepancies, or mistakes that might be found in any of the documents. Readers can email PDA at: sci\_reg@pda.org

#### PDA Regulatory Commenting Team:

Carol Rea Flynn, Gerresheimer Glass, Inc., (Co-Lead) Lane Sattler, OptiNose US, Inc., (Co-Lead) Zain Abidin, Drug Regulatory Authority of Pakistan Robert Dream, Consultant Ben Gauthier, Momentive Technologies Mauro Giusti, Eli Lilly Matthew Hall, Corning Claudia Heinl, Schott Kevin McClean, SGD Pharma Packaging Anthony Perry, Schott Devender Singh, Pfizer Folker Steden, Schott Jingwei Zhang, SGD Pharm Packaging